A systematic approach to orient the human protein–protein interaction network

[1]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[2]  J. Fisher,et al.  Cell-Specific Computational Modeling of the PIM Pathway in Acute Myeloid Leukemia. , 2017, Cancer research.

[3]  R. Sharan,et al.  Elucidation of Signaling Pathways from Large-Scale Phosphoproteomic Data Using Protein Interaction Networks. , 2016, Cell systems.

[4]  Sourav Bandyopadhyay,et al.  Challenges in identifying cancer genes by analysis of exome sequencing data , 2016, Nature Communications.

[5]  Anna Ritz,et al.  Pathways on demand: automated reconstruction of human signaling networks , 2016, npj Systems Biology and Applications.

[6]  Apostolos Malatras,et al.  CellWhere: graphical display of interaction networks organized on subcellular localizations , 2015, Nucleic Acids Res..

[7]  Janos X. Binder,et al.  DISEASES: Text mining and data integration of disease–gene associations , 2014, bioRxiv.

[8]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[9]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[10]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[11]  Lenore Cowen,et al.  New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence , 2014, Bioinform..

[12]  Roded Sharan,et al.  Network orientation via shortest paths , 2014, Bioinform..

[13]  R. Sharan,et al.  A Method for Predicting Protein-Protein Interaction Types , 2014, PloS one.

[14]  David Haussler,et al.  Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE) , 2013, Bioinform..

[15]  R. Sharan Toward a role model , 2013, EMBO reports.

[16]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[17]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[18]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[19]  Roded Sharan,et al.  Reconstructing Boolean Models of Signaling , 2012, RECOMB.

[20]  Ming Lu,et al.  hUbiquitome: a database of experimentally verified ubiquitination cascades in humans , 2011, Database J. Biol. Databases Curation.

[21]  Roded Sharan,et al.  ANAT: A Tool for Constructing and Analyzing Functional Protein Networks , 2011, Science Signaling.

[22]  A. Vinayagam,et al.  A Directed Protein Interaction Network for Investigating Intracellular Signal Transduction , 2011, Science Signaling.

[23]  Mehmet Koyutürk,et al.  DADA: Degree-Aware Algorithms for Network-Based Disease Gene Prioritization , 2011, BioData Mining.

[24]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[25]  Roded Sharan,et al.  Optimally Orienting Physical Networks , 2011, RECOMB.

[26]  Anupam Gupta,et al.  Discovering pathways by orienting edges in protein interaction networks , 2010, Nucleic acids research.

[27]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[28]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[29]  Peer Bork,et al.  Drug-Induced Regulation of Target Expression , 2010, PLoS Comput. Biol..

[30]  Xin Chen,et al.  DCDB: Drug combination database , 2010, Bioinform..

[31]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[32]  D. Lauffenburger,et al.  Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction , 2009, Molecular systems biology.

[33]  R. Aebersold,et al.  Applying mass spectrometry-based proteomics to genetics, genomics and network biology , 2009, Nature Reviews Genetics.

[34]  Steffen Klamt,et al.  The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data , 2009, PLoS Comput. Biol..

[35]  R. Sharan,et al.  Toward accurate reconstruction of functional protein networks , 2009, Molecular systems biology.

[36]  D. Karger,et al.  Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity , 2009, Nature Genetics.

[37]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[38]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[39]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[40]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[41]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[43]  Péter Csermely,et al.  The efficiency of multi-target drugs: the network approach might help drug design. , 2004, Trends in pharmacological sciences.

[44]  P. Dessen,et al.  An Atlas on genes and chromosomes in oncology and haematology. , 2004, Cellular and molecular biology.

[45]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[46]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[47]  A. Kansal Modeling approaches to type 2 diabetes. , 2004, Diabetes technology & therapeutics.

[48]  J. Kornhauser,et al.  PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation , 2004, Proteomics.

[49]  R. Christopher,et al.  Data‐Driven Computer Simulation of Human Cancer Cell , 2004, Annals of the New York Academy of Sciences.

[50]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[51]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[52]  Roded Sharan,et al.  Inference of Personalized Drug Targets via Network Propagation , 2016, PSB.

[53]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[54]  Justin Lamb,et al.  The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.

[55]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..