Transparallel mind: classical computing with quantum power

Inspired by the extraordinary computing power promised by quantum computers, the quantum mind hypothesis postulated that quantum mechanical phenomena are the source of neuronal synchronization, which, in turn, might underlie consciousness. Here, I present an alternative inspired by a classical computing method with quantum power. This method relies on special distributed representations called hyperstrings. Hyperstrings are superpositions of up to an exponential number of strings, which—by a single-processor classical computer—can be evaluated in a transparallel fashion, that is, simultaneously as if only one string were concerned. Building on a neurally plausible model of human visual perceptual organization, in which hyperstrings are formal counterparts of transient neural assemblies, I postulate that synchronization in such assemblies is a manifestation of transparallel information processing. This accounts for the high combinatorial capacity and speed of human visual perceptual organization and strengthens ideas that self-organizing cognitive architecture bridges the gap between neurons and consciousness.

[1]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[2]  E Leeuwenberg,et al.  From Geons to Structure. A Note on Object Representation , 1994, Perception.

[3]  Yuri Ozhigov,et al.  Quantum Computers Speed Up Classical with Probability Zero , 1998, quant-ph/9803064.

[4]  J. Hochberg,et al.  A quantitative approach to figural "goodness". , 1953, Journal of experimental psychology.

[5]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[6]  Gavan Lintern,et al.  Dynamic patterns: The self-organization of brain and behavior , 1997, Complex.

[7]  Roger Penrose,et al.  Consciousness in the Universe: Neuroscience, Quantum Space-Time Geometry and Orch OR Theory , 2011 .

[8]  W. Epstein,et al.  The status of the minimum principle in the theoretical analysis of visual perception. , 1985, Psychological bulletin.

[9]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[10]  A. Fingelkurts,et al.  MAKING COMPLEXITY SIMPLER: MULTIVARIABILITY AND METASTABILITY IN THE BRAIN , 2004, The International journal of neuroscience.

[11]  Benjamin Naumann The Architecture Of Cognition , 2016 .

[12]  Peter A. van der Helm,et al.  Cognitive architecture of perceptual organization: from neurons to gnosons , 2011, Cognitive Processing.

[13]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[14]  Peter A. van der Helm,et al.  Weber-Fechner behavior in symmetry perception? , 2010 .

[15]  A. Fingelkurts,et al.  Operational Architectonics of the Human Brain Biopotential Field: Towards Solving the Mind-Brain Problem , 2001 .

[16]  Patrick Suppes,et al.  Quantum mechanics, interference, and the brain , 2009 .

[17]  Emanuel Leeuwenberg,et al.  Holographic goodness is not that bad: Reply to Olivers, Chater and Watson (2004) , 2004 .

[18]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[19]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[20]  P. A. Van Der Helm,et al.  Accessibility: a criterion for regularity and hierarchy in visual pattern codes , 1991 .

[21]  Geoffrey E. Hinton Mapping Part-Whole Hierarchies into Connectionist Networks , 1990, Artif. Intell..

[22]  Tony Plate,et al.  Holographic Reduced Representations: Convolution Algebra for Compositional Distributed Representations , 1991, IJCAI.

[23]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[24]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[25]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[26]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[27]  R. Penrose The emperor's new mind: concerning computers, minds, and the laws of physics , 1989 .

[28]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[29]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model. , 1982, Psychological review.

[30]  R. Sun Desiderata for cognitive architectures , 2004 .

[31]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[32]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[33]  J. Dupré The Conscious Mind: In Search of a Fundamental Theory , 2000 .

[34]  J. Searle THE MYSTERY OF CONSCIOUSNESS , 2019, Intellectual Entertainments.

[35]  Peter A. van der Helm,et al.  Simplicity in perceptual organization , 2015 .

[36]  Emanuel Leeuwenberg,et al.  A better approach to goodness: Reply to Wagemans (1999). , 1999 .

[37]  Dirk-Jan Povel,et al.  Theory of serial pattern production: Tree traversals. , 1982 .

[38]  Emanuel Leeuwenberg,et al.  Structural Information Theory: The Simplicity of Visual Form , 2012 .

[39]  van Leeuwen C,et al.  Stability and Intermittency in Large-Scale Coupled Oscillator Models for Perceptual Segmentation , 1997, Journal of mathematical psychology.

[40]  D. Chalmers Facing Up to the Problem of Consciousness , 1995 .

[41]  J HOCHBERG,et al.  The psychophysics of form: reversible-perspective drawings of spatial objects. , 1960, The American journal of psychology.

[42]  Lawrence S. Moss,et al.  Editors’ Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing , 2013, J. Philos. Log..

[43]  E. Leeuwenberg,et al.  Goodness of visual regularities: a nontransformational approach. , 1996, Psychological review.

[44]  Patrick Suppes,et al.  Learning Pattern Recognition Through Quasi-Synchronization of Phase Oscillators , 2011, IEEE Transactions on Neural Networks.

[45]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[46]  S. Lehar Gestalt isomorphism and the primacy of subjective conscious experience: A Gestalt Bubble model , 2003, Behavioral and Brain Sciences.

[47]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[48]  Z. Pylyshyn Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. , 1999, The Behavioral and brain sciences.

[49]  Frank Harary,et al.  Graph Theory , 2016 .

[50]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[51]  Catherine Tallon-Baudry,et al.  The roles of gamma-band oscillatory synchrony in human visual cognition. , 2009, Frontiers in bioscience.

[52]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[53]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[54]  Harald Atmanspacher,et al.  QUANTUM APPROACHES TO CONSCIOUSNESS. , 2022 .

[55]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[56]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[57]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[58]  J. R. Pomerantz,et al.  A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. , 2012, Psychological bulletin.

[59]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[60]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , 2017 .

[61]  Sam Clarke,et al.  The Cambridge Handbook of Cognitive Science , 2015 .

[62]  V. Stenger The Myth of Quantum Consciousness , 1992 .

[63]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[64]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[65]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[66]  Ingo Bojak,et al.  Self-organized 40Hz synchronization in a physiological theory of EEG , 2007, Neurocomputing.

[67]  Lawrence C. Sager,et al.  Perception of wholes and of their component parts: some configural superiority effects. , 1977, Journal of experimental psychology. Human perception and performance.

[68]  E Leeuwenberg,et al.  Unity and Variety in Visual Form , 1991, Perception.

[69]  Gerard J. Rinkus,et al.  Quantum Computation via Sparse Distributed Representation , 2012, ArXiv.

[70]  Ruth Kimchi,et al.  Relative Dominance of Holistic and Component Properties in the Perceptual Organization of Visual Objects , 2006 .

[71]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[72]  Allen Newell,et al.  Cognitive architectures , 1989 .

[73]  H. Stapp The importance of quantum decoherence in brain processes , 2000, quant-ph/0010029.

[74]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[75]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[76]  Bart De Moor,et al.  Geometric Analogue of Holographic Reduced Representation , 2007, ArXiv.

[77]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[78]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Newell Unified Theories of Cognition , 1990 .

[80]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[81]  김동규,et al.  [서평]「Algorithms on Strings, Trees, and Sequences」 , 2000 .

[82]  R. Feynman Simulating physics with computers , 1999 .

[83]  Iris van Rooij,et al.  The Tractable Cognition Thesis , 2008, Cogn. Sci..

[84]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[85]  Leif H. Finkel,et al.  Synchronization: The Computational Currency of Cognition , 1998 .

[86]  DeLiang Wang,et al.  Synchrony and Desynchrony in Integrate-and-Fire Oscillators , 1999, Neural Computation.

[87]  Maria Petrou,et al.  Learning in Pattern Recognition , 1999, MLDM.

[88]  Peter A. van der Helm Simplicity in Vision: A Multidisciplinary Account of Perceptual Organization , 2014 .

[89]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[90]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[91]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[92]  Peter A. van der Helm,et al.  Transparallel processing by hyperstrings. , 2004 .

[93]  Patrick Suppes,et al.  Phase-oscillator computations as neural models of stimulus–response conditioning and response selection ☆ , 2010, 1010.3063.

[94]  J. Townsend,et al.  Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories , 1995 .

[95]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: part 1.: an account of basic findings , 1988 .

[96]  C. Seife Cold Numbers Unmake the Quantum Mind , 2000, Science.

[97]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[98]  C. Leeuwen What needs to emerge to make you conscious , 2007 .

[99]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[100]  D A Pollen,et al.  On the neural correlates of visual perception. , 1999, Cerebral cortex.

[101]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[102]  W. Köhler Die physischen Gestalten in Ruhe und im stationären Zustand : eine naturphilosophische Untersuchung , 1920 .

[103]  P. A. van der Helm,et al.  Transparallel processing by hyperstrings. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[105]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[106]  Michael J. Flynn,et al.  Some Computer Organizations and Their Effectiveness , 1972, IEEE Transactions on Computers.

[107]  Max Tegmark,et al.  The importance of quantum decoherence in brain processes , 1999, ArXiv.