On the Analysis of a Multipartite Entanglement Distribution Switch

We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.

[1]  Sebastian Martin Ruiz,et al.  80.52 An algebraic identity leading to Wilson’s theorem , 1996, The Mathematical Gazette.

[2]  윤재량 2004 , 2019, The Winning Cars of the Indianapolis 500.

[3]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  Alexander Kmentt 2017 , 2018, The Treaty Prohibiting Nuclear Weapons.

[6]  Denis Gifford,et al.  1953 , 2018, The British Film Catalogue.

[7]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[8]  R. Tweedie The existence of moments for stationary Markov chains , 1983, Journal of Applied Probability.

[9]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[10]  Marc Mézard,et al.  1993 , 1993, The Winning Cars of the Indianapolis 500.

[11]  Wojciech Szpankowski,et al.  Stability Conditions for Multidimensional Queueing Systems with Computer Applications , 1988, Oper. Res..

[12]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[13]  S. Hewitt,et al.  2007 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[14]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[15]  M. Varacallo,et al.  2019 , 2019, Journal of Surgical Orthopaedic Advances.

[16]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[17]  Rodney Van Meter Quantum Networking , 2019, Cryptography Apocalypse.

[18]  Dieter Fiems,et al.  Performance Evaluation of a Kitting Process , 2011, ASMTA.

[19]  D. Vere-Jones Markov Chains , 1972, Nature.

[20]  A. James 2010 , 2011, Philo of Alexandria: an Annotated Bibliography 2007-2016.

[21]  李容善 1992 , 1992, The Winning Cars of the Indianapolis 500.

[22]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[23]  Irmengard Rauch 1994 , 1994, Semiotica.

[24]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[25]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .

[26]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[27]  Ravi Mazumdar,et al.  On a Generalized Foster-Lyapunov Type Criterion for the Stability of Multidimensional Markov chains with Applications to the Slotted-Aloha Protocol with Finite Number of Queues , 2009, ArXiv.

[28]  F. G. Foster On the Stochastic Matrices Associated with Certain Queuing Processes , 1953 .

[29]  양희영 2005 , 2005, Los 25 años de la OMC: Una retrospectiva fotográfica.

[30]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[31]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[32]  S. Hewitt,et al.  1987 , 1987, Literatur in der SBZ/DDR.

[33]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[34]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[35]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[36]  金繁雄 1986 , 1986, Qatar 1975/76-2019.

[37]  S. M. García,et al.  2014: , 2020, A Party for Lazarus.

[38]  Satheesh Ramachandran,et al.  Performance analysis of a kitting process in stochastic assembly systems , 2005, Comput. Oper. Res..

[39]  D. Gifford 1973: , 1973, Charlotte Delbo.

[40]  G. Fayolle,et al.  Topics in the Constructive Theory of Countable Markov Chains , 1995 .

[41]  J. Morton,et al.  Quantum metrology with molecular ensembles , 2010 .

[42]  S. Hewitt,et al.  1980 , 1980, Literatur in der SBZ/DDR.

[43]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[44]  김선경,et al.  1999 , 2000, Les 25 ans de l’OMC: Une rétrospective en photos.

[45]  유춘자 1991 , 1992, The Winning Cars of the Indianapolis 500.

[46]  Jean-Marc Lafon 1983 , 2021, Literatur in der SBZ/DDR.

[47]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[48]  S. Frigo,et al.  1985 , 1985, Literatur in der SBZ/DDR.

[49]  Linn I. Sennott Tests for the Nonergodicity of Multidimensional Markov Chains , 1985, Oper. Res..

[50]  Saikat Guha,et al.  On the Stochastic Analysis of a Quantum Entanglement Distribution Switch , 2019, IEEE Transactions on Quantum Engineering.

[51]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[52]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[53]  Hermann Kampermann,et al.  Finite-key effects in multipartite quantum key distribution protocols , 2018, New Journal of Physics.

[54]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[55]  E. Tronci,et al.  1996 , 1997, Affair of the Heart.

[56]  Sharon L. Wolchik 1989 , 2009 .

[57]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[58]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[59]  E. H. Lipper,et al.  Assembly-like queues with finite capacity: Bounds, asymptotics and approximations , 1986, Queueing Syst. Theory Appl..

[60]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[61]  Carl Landwher,et al.  2018 , 2019, Communications of the ACM.

[62]  Â Zvi Rosberg A positive recurrence criterion associated with multidimensional queueing processes , 1980 .

[63]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[64]  신애자,et al.  1998 , 2001, The Winning Cars of the Indianapolis 500.

[65]  U. Narayan Bhat,et al.  Finite capacity assembly-like queues , 1986, Queueing Syst. Theory Appl..

[66]  Flavio Bonomi,et al.  An approximate analysis for a class of assembly-like queues , 1987, Queueing Syst. Theory Appl..

[67]  A. Zeilinger,et al.  Quantum computing with controlled-NOT and few qubits , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  R. V. Meter Quantum Networking: Van Meter/Quantum Networking , 2014 .

[69]  S. Hewitt,et al.  1982 , 1982, Qatar 1975/76-2019.

[70]  G. Jantzen 1988 , 1988, The Winning Cars of the Indianapolis 500.

[71]  O. Boxma Book review: Random walks in the quarter-plane , 2000 .

[72]  A. Azzouz 2011 , 2020, City.

[73]  J. Harrison Assembly-like queues , 1973, Journal of Applied Probability.

[74]  Ferdinand Helmer,et al.  Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED , 2009, 0902.0341.

[75]  2001 , 2018, Wild Onion Nurse.

[76]  Zachary Eldredge,et al.  Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.

[77]  Donald F. Towsley,et al.  On the Capacity Region of Bipartite and Tripartite Entanglement Switching , 2019, SIGMETRICS Perform. Evaluation Rev..

[78]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[79]  蕭瓊瑞撰述,et al.  2009 , 2019, The Winning Cars of the Indianapolis 500.

[80]  C. Martin 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.

[81]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[82]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[83]  W. E. Wilhelm,et al.  Kitting process in a stochastic assembly system , 1994, Queueing Syst. Theory Appl..

[84]  W. J. Hopp,et al.  Bounds and heuristics for assembly-like queues , 1989, Queueing Syst. Theory Appl..