How to construct curves over finite fields with many points

In this paper we give several methods to construct curves over finite fields with many points and illustrate this with examples of the results.

[1]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[2]  Michael Wirtz Konstruktion und Tabellen linearer Codes , 1991 .

[3]  M. van der Vlugt,et al.  Generalized {H}amming weights of codes and curves over finite fields with many points , 1994 .

[4]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[5]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[6]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[7]  M. van der Vlugt,et al.  Quadratic forms, generalized Hamming weights of codes and curves with many points , 1994 .

[8]  S. Vladut,et al.  Number of points of an algebraic curve , 1983 .

[9]  M. V. Vlugt,et al.  Artin-Schreier curves and codes , 1991 .

[10]  Marcel van der Vlugt,et al.  Reed-Muller codes and supersingular curves. I , 1992 .

[11]  G. vander Geer,et al.  Generalized Hamming Weights of Melas Codes and Dual Melas Codes , 1994, SIAM J. Discret. Math..

[12]  I. Yu.,et al.  What is the maximum number of points on a curve over $F_2$? , 1982 .

[13]  Marcel van der Vlugt,et al.  Fibre Products of Artin-Schreier Curves and Generalized Hamming Weights of Codes , 1995, J. Comb. Theory, Ser. A.

[14]  G. Geer,et al.  Curves over finite fields of characteristic 2 with many rational points , 1993 .

[15]  Chaoping Xing,et al.  The genus of maximal function fields over finite fields , 1995 .