Reprint of "Nesterov's algorithm solving dual formulation for compressed sensing"

We develop efficient algorithms for solving the compressed sensing problem. We modify the standard @?"1 regularization model for compressed sensing by adding a quadratic term to its objective function so that the objective function of the dual formulation of the modified model is Lipschitz continuous. In this way, we can apply the well-known Nesterov algorithm to solve the dual formulation and the resulting algorithms have a quadratic convergence. Numerical results presented in this paper show that the proposed algorithms outperform significantly the state-of-the-art algorithm NESTA in accuracy.

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[3]  Lixin Shen,et al.  Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction , 2012, Inverse problems.

[4]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[5]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[6]  C. Micchelli,et al.  Proximity algorithms for image models: denoising , 2011 .

[7]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[8]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[9]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[10]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Lixin Shen,et al.  A proximity algorithm accelerated by Gauss–Seidel iterations for L1/TV denoising models , 2012 .

[13]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[14]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  D. Takhar,et al.  A compressed sensing camera : New theory and an implementation using digital micromirrors , 2006 .

[17]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[18]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[19]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[20]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[21]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[22]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[23]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[24]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[25]  Robert D. Nowak,et al.  Compressive wireless sensing , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.