Robust Generation of Logical Qubit Singlet States with Reverse Engineering and Optimal Control with Spin Qubits

A protocol is proposed to generate singlet states of three logical qubits constructed by pairs of spins. Single and multiple operations of logical qubits are studied for the construction of an effective Hamiltonian, with which robust control fields are derived with invariant-based reverse engineering and optimal control. Moreover, systematic errors are further compensated by periodic modulation for better robustness. Furthermore, resistance to decoherence of the protocol is also shown with numerical simulations. Therefore, the protocol may provide useful perspectives for generations of logical qubit entanglement in spin systems.

[1]  S Guérin,et al.  Robust quantum control by a single-shot shaped pulse. , 2013, Physical review letters.

[2]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[3]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[4]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[5]  Jie Song,et al.  Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade , 2020, 2008.03059.

[6]  Ping Xu,et al.  Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions , 2014 .

[7]  Jie Song,et al.  Deterministic conversions between Greenberger-Horne-Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering , 2019, Physical Review A.

[8]  Jie Song,et al.  Generation of nonclassical states in nonlinear oscillators via Lyapunov control , 2020 .

[9]  Wei Zhong,et al.  Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics , 2018, Quantum Inf. Process..

[10]  Eliot Kapit,et al.  Error-Transparent Quantum Gates for Small Logical Qubit Architectures. , 2017, Physical review letters.

[11]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[12]  A. Starace,et al.  Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. , 2002, Physical review letters.

[13]  H. J. Korsch,et al.  Dynamical Noether invariants for time-dependent nonlinear systems , 1981 .

[14]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[15]  D. Alonso,et al.  Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.

[16]  Peng Xu,et al.  Efficient generation of many-body singlet states of spin-1 bosons , 2017 .

[17]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[18]  Lan Zhou,et al.  Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state , 2015, Quantum Inf. Process..

[19]  Xiao-Qiang Shao,et al.  Engineering steady three-atom singlet states via quantum-jump-based feedback , 2012 .

[20]  Yue Ban,et al.  Fast and robust control of two interacting spins , 2018, Physical Review A.

[21]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[22]  Abolfazl Bayat,et al.  Measurement-assisted quantum communication in spin channels with dephasing , 2015, 1502.03468.

[23]  Jie Song,et al.  Flexible scheme for the implementation of nonadiabatic geometric quantum computation , 2020 .

[24]  Jin-Lei Wu,et al.  Generation of tree-type three-dimensional entangled states via adiabatic passage , 2016 .

[25]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[26]  X. Shao,et al.  Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics , 2010 .

[27]  Lan Zhou,et al.  Feasible logic Bell-state analysis with linear optics , 2015, Scientific Reports.

[28]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[29]  A. Cabello N-particle N-level singlet States: some properties and applications. , 2002, Physical review letters.

[30]  Hakan E. Tureci,et al.  Coherent optical manipulation of triplet-singlet states in coupled quantum dots , 2007 .

[31]  Daniel A. Lidar,et al.  Encoding one logical qubit into six physical qubits , 2008, 0803.1495.

[32]  Jun Li,et al.  Experimental preparation of Greenberger-Horne-Zeilinger states in an Ising spin model by partially suppressing the nonadiabatic transitions , 2019, Physical Review A.

[33]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[34]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[35]  Xiu-Min Lin,et al.  Fast creation of a three-atom singlet state with a dissipative mechanism and Rydberg blockade , 2018, Physical Review A.

[36]  M. Suzuki,et al.  General Decomposition Theory of Ordered Exponentials , 1993 .

[37]  Thomas Halfmann,et al.  Robust not gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences , 2017 .

[38]  X. Shao,et al.  Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control , 2016, 1607.05413.

[39]  D. Alonso,et al.  Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors , 2013, 1305.6127.

[40]  Lan Zhou,et al.  Two-step complete polarization logic Bell-state analysis , 2014, Scientific Reports.

[41]  Hamidreza Mohammadi,et al.  Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field , 2008, 0801.1897.

[42]  Wen-An Li,et al.  Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics , 2011 .

[43]  Yu-Bo Sheng,et al.  Purification of Logic-Qubit Entanglement , 2015, Scientific Reports.

[44]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[45]  Xinhua Peng,et al.  Preparing Greenberger-Horne-Zeilinger and W states on a long-range Ising spin model by global controls , 2017, 1703.03000.

[46]  Zach DeVito,et al.  Opt , 2017 .

[47]  Xiu-Min Lin,et al.  Generation of the singlet state for three atoms in cavity QED , 2007 .

[48]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[49]  Adan Cabello Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states , 2002 .

[50]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[51]  Xiu-Min Lin,et al.  Dissipative generation of a steady three-atom singlet state based on Rydberg pumping , 2017 .

[52]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[53]  Yu-Bo Sheng,et al.  Complete logic Bell-state analysis assisted with photonic Faraday rotation , 2015 .

[54]  Sophia E. Economou,et al.  Fast high-fidelity entangling gates for spin qubits in Si double quantum dots , 2019, Physical Review B.

[55]  M. Bourennane,et al.  QUANTUM KEY DISTRIBUTION USING MULTILEVEL ENCODING , 2001 .

[56]  W Dür,et al.  Stable macroscopic quantum superpositions. , 2011, Physical review letters.

[57]  Xi Chen,et al.  Improving shortcuts to adiabaticity by iterative interaction pictures , 2013 .

[58]  E. Torrontegui,et al.  Hamiltonian engineering via invariants and dynamical algebra , 2014, 1402.5695.

[59]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[60]  J. G. Muga,et al.  Engineering of fast population transfer in three-level systems , 2012 .

[61]  D. Sugny,et al.  Robust optimal control of two-level quantum systems , 2017, 1704.07653.

[62]  Y. Q. Guo,et al.  ENHANCED THERMAL ENTANGLEMENT IN AN ANISOTROPIC HEISENBERG XYZ CHAIN , 2003 .

[63]  N. D. Mermin,et al.  Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s , 1980 .

[64]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[65]  Dionisis Stefanatos,et al.  Efficient generation of the triplet Bell state between coupled spins using transitionless quantum driving and optimal control , 2018, Physical Review A.

[66]  Wolfgang Dur,et al.  Effective noise channels for encoded quantum systems , 2013, 1306.1738.

[67]  Amarendra K. Sarma,et al.  High-fidelity entangled Bell states via shortcuts to adiabaticity , 2016, 1607.00095.

[68]  J. G. Muga,et al.  Shortcuts to adiabaticity: Concepts, methods, and applications , 2019, Reviews of Modern Physics.

[69]  Raymond Laflamme,et al.  Fidelity enhancement by logical qubit encoding. , 2007, Physical review letters.

[70]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.

[71]  X. Shao,et al.  Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission , 2013, 1312.0188.

[72]  David Gu'ery-Odelin,et al.  Shortcut to adiabaticity in a Stern-Gerlach apparatus , 2017, 1707.04288.

[73]  Z. Song,et al.  Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering , 2009 .

[74]  Dieter Suter,et al.  Quantum simulation of a system with competing two- and three-body interactions. , 2008, Physical review letters.

[75]  Wolfgang Dür,et al.  Stability of encoded macroscopic quantum superpositions , 2012 .

[76]  J. R. Petta,et al.  High-fidelity quantum gates in Si/SiGe double quantum dots , 2017, 1711.00754.

[77]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .