Life‐History Variation in Contrasting Habitats: Flowering Decisions in a Clonal Perennial Herb (Veratrum album)

Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat‐specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat‐specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy—the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density‐dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size‐fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs.

[1]  T. Young LOBELIA TELEKII HERBIVORY, MORTALITY, AND SIZE AT REPRODUCTION: VARIATION WITH GROWTH RATE , 1985 .

[2]  P. Cheptou,et al.  Combining population genetics and demographical approaches in evolutionary studies of plant mating systems , 2007 .

[3]  N. Sletvold Effects of plant size on reproductive output and offspring performance in the facultative biennial Digitalis purpurea , 2002 .

[4]  C. M. Lessells,et al.  The Evolution of Life Histories , 1994 .

[5]  D. Kleijn,et al.  The Relation Between Unpalatable Species, Nutrients and Plant Species Richness in Swiss Montane Pastures , 2006, Biodiversity & Conservation.

[6]  B. Schmid,et al.  Genetic differentiation of life‐history traits within populations of the clonal plant Ranunculus reptans , 2000 .

[7]  O. Eriksson,et al.  Seed and microsite limitation of recruitment in plant populations , 1992, Oecologia.

[8]  Stephen P. Ellner,et al.  Stochastic stable population growth in integral projection models: theory and application , 2007, Journal of mathematical biology.

[9]  Tim G Benton,et al.  Complex population dynamics and complex causation: devils, details and demography , 2006, Proceedings of the Royal Society B: Biological Sciences.

[10]  Tara A. Forbis Seedling demography in an alpine ecosystem. , 2003, American journal of botany.

[11]  F. H. Rodd,et al.  POPULATION-DYNAMIC CONSEQUENCES OF PREDATOR-INDUCED LIFE HISTORY VARIATION IN THE GUPPY (POECILIA RETICULATA) , 2002 .

[12]  Stephen P. Ellner,et al.  Evolution of size–dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  D. A. Douglas The Balance between Vegetative and Sexual Reproduction of Mimulus Primuloides (Scrophulariaceae) at Different Altitudes in California , 1981 .

[14]  EVOLUTION IN THE REAL WORLD: STOCHASTIC VARIATION AND THE DETERMINANTS OF FITNESS IN CARLINA VULGARIS , 2002, Evolution; international journal of organic evolution.

[15]  Erik Matthysen,et al.  Demographic Characteristics and Population Dynamical Patterns of Solitary Birds , 2002, Science.

[16]  J. Weiner,et al.  How important are environmental maternal effects in plants? A study with Centaurea maculosa , 1997 .

[17]  K. Andersen,et al.  Asymptotic Size Determines Species Abundance in the Marine Size Spectrum , 2006, The American Naturalist.

[18]  C Jessica E Metcalf,et al.  Why evolutionary biologists should be demographers. , 2007, Trends in ecology & evolution.

[19]  P. Stoll,et al.  The relative importance of sexual and clonal reproduction for population growth in the long‐lived alpine plant Geum reptans , 2006 .

[20]  N. Hautekèete,et al.  Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance , 2002 .

[21]  J. M. Smith Evolution of sex , 1975, Nature.

[22]  J. Reinartz Life History Variation of Common Mullein (Verbascum Thapsus): I. Latitudinal Differences in Population Dynamics and Timing of Reproduction , 1984 .

[23]  A. Watkinson,et al.  Seedling recruitment and the maintenance of clonal diversity in plant populations-a computer simulation of Ranunculus repens , 1993 .

[24]  D. Kleijn,et al.  Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long‐lived, clonal plant species , 2002 .

[25]  H. G. Baker,et al.  Selection for colonizing abilitty. , 1965 .

[26]  S. Ellner,et al.  Rapid evolution and the convergence of ecological and evolutionary time , 2005 .

[27]  James B. Grace,et al.  Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia , 1982 .

[28]  David N. Reznick,et al.  Effect of extrinsic mortality on the evolution of senescence in guppies , 2004, Nature.

[29]  S. Barrett,et al.  LIFE‐HISTORY DIFFERENTIATION AND THE MAINTENANCE OF MONOECY AND DIOECY IN SAGITTARIA LATIFOLIA (ALISMATACEAE) , 2003, Evolution; international journal of organic evolution.

[30]  W. Forster,et al.  Die Schmetterlinge Mitteleuropas , 2005, Anzeiger für Schädlingskunde.

[31]  Growth–survival trade-offs and allometries in rosette-forming perennials , 2006 .

[32]  C. Pfister,et al.  INDIVIDUAL VARIATION AND ENVIRONMENTAL STOCHASTICITY: IMPLICATIONS FOR MATRIX MODEL PREDICTIONS , 2003 .

[33]  H. Kokko,et al.  The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? , 2007, Ecology letters.

[34]  M. Rees,et al.  Seed bank persistence of clonal weeds in contrasting habitats: implications for control , 2007, Plant Ecology.

[35]  S. Shumway Physiological Integration among Clonal Ramets during Invasion of Disturbance Patches in a New England Salt Marsh , 1995 .

[36]  L. C. Cole The Population Consequences of Life History Phenomena , 1954, The Quarterly Review of Biology.

[37]  Uhrbahn W. Forster und Th. A. Wohlfahrt: „Die Schmetterlinge Mitteleuropas” 16. Lieferung, 48 Seiten Text, 4 Farbtafeln, 37 Textfiguren. Franckh'sche Verlagshandlung, Stuttgart, 1963. Preis DM 18.– , 1964 .

[38]  T. Herben,et al.  Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations , 2005, Oecologia.

[39]  M. Rees,et al.  Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  M. Oli,et al.  The Relative Importance of Life‐History Variables to Population Growth Rate in Mammals: Cole’s Prediction Revisited , 2003, The American Naturalist.

[41]  T. Spiegelberger,et al.  Sawdust Addition Reduces the Productivity of Nitrogen‐Enriched Mountain Grasslands , 2009 .

[42]  Marc Mangel,et al.  MODELING INVESTMENTS IN SEEDS, CLONAL OFFSPRING, AND TRANSLOCATION IN A CLONAL PLANT , 1999 .

[43]  Lindsay A. Turnbull,et al.  Are plant populations seed-limited? A review of seed sowing experiments. , 2000 .

[44]  Fluctuating selection on reproductive timing in Digitalis purpurea , 2007 .

[45]  O. Eriksson,et al.  Dynamics of genets in cluonal plants. , 1993, Trends in ecology & evolution.

[46]  James H. Brown,et al.  Allometric scaling of production and life-history variation in vascular plants , 1999, Nature.

[47]  P. Klinkhamer,et al.  Sex and size in cosexual plants. , 1997, Trends in ecology & evolution.

[48]  Odo Diekmann,et al.  On evolutionarily stable life histories, optimization and the need to be specific about density dependence , 1995 .

[49]  R. Cook Growth and development in clonal plant populations , 1985 .

[50]  Stephen P. Ellner,et al.  Evolution of complex flowering strategies: an age– and size–structured integral projection model , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  T. Young Evolution of semelparity in Mount Kenya lobelias , 1990, Evolutionary Ecology.

[52]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[53]  Mark Rees,et al.  Evolutionary demography of monocarpic perennials. , 2003 .

[54]  B. Charlesworth,et al.  Evolution in Age-Structured Populations. , 1995 .

[55]  Sasha R. X. Dall,et al.  Estimating individual contributions to population growth: evolutionary fitness in ecological time , 2006, Proceedings of the Royal Society B: Biological Sciences.

[56]  T. Young,et al.  A demographic model explains life‐history variation in Arabis fecunda , 2005 .

[57]  M. Mangel,et al.  Evolution of Size‐Dependent Flowering in Onopordum illyricum: A Quantitative Assessment of the Role of Stochastic Selection Pressures , 1999, The American Naturalist.

[58]  M. Rees,et al.  Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[60]  J. Metz,et al.  Life history tactics of annual organisms: The joint effects of dispersal and delayed germination , 1987 .

[61]  Y. Piquot,et al.  Variation in sexual and asexual reproduction among young and old populations of the perennial macrop , 1998 .

[62]  P. Klinkhamer,et al.  THRESHOLD SIZE FOR FLOWERING IN DIFFERENT HABITATS: EFFECTS OF SIZE‐DEPENDENT GROWTH AND SURVIVAL , 1997 .

[63]  John A. Endler,et al.  Experimentally induced life-history evolution in a natural population , 1990, Nature.

[64]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[65]  L. Partridge,et al.  The Ecological Context of Life History Evolution , 1988, Science.

[66]  David N. Reznick,et al.  r‐ AND K‐SELECTION REVISITED: THE ROLE OF POPULATION REGULATION IN LIFE‐HISTORY EVOLUTION , 2002 .

[67]  S. Wanless,et al.  Inter-population variation in demographic parameters: a neglected subject? , 2005 .

[68]  Mark Rees,et al.  Seed Dormancy and Delayed Flowering in Monocarpic Plants: Selective Interactions in a Stochastic Environment , 2006, The American Naturalist.

[69]  P. Klinkhamer,et al.  Evolutionary Ecology of Plant Reproductive Strategies , 2005 .

[70]  Stephen P. Ellner,et al.  Simple Methods for Calculating Age‐Based Life History Parameters for Stage‐Structured Populations , 1992 .

[71]  M. Burd,et al.  Age-size plasticity for reproduction in monocarpic plants. , 2006, Ecology.

[72]  J. J. Pan,et al.  Fitness and evolution in clonal plants: the impact of clonal growth , 2001, Evolutionary Ecology.

[73]  S. Ellner,et al.  SIZE‐SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED POPULATION MODEL , 2000 .

[74]  M. Rees,et al.  DEMOGRAPHIC AND EVOLUTIONARY IMPACTS OF NATIVE AND INVASIVE INSECT HERBIVORES ON CIRSIUM CANESCENS , 2005 .

[75]  S. Ellner,et al.  Integral Projection Models for Species with Complex Demography , 2006, The American Naturalist.

[76]  D. Roff,et al.  Evolutionary Ecology: Concepts and Case Studies , 2001 .

[77]  D. Kleijn,et al.  Veratrum album L. in montane grasslands: a model system for implementing biological control in land management practices of high biodiversity habitats , 2001 .

[78]  D. O. Logofet Matrix Population Models: Construction, Analysis, and Interpretation , 2002 .

[79]  MEASURING PROBABILISTIC REACTION NORMS FOR AGE AND SIZE AT MATURATION , 2002, Evolution; international journal of organic evolution.

[80]  J. Chambers Relationships between Seed Fates and Seedling Establishment in an Alpine Ecosystem , 1995 .