Spemann's organizer and self-regulation in amphibian embryos

[1]  E. Robertis,et al.  Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases , 2006, Cell.

[2]  E. Robertis,et al.  Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field , 2005, Cell.

[3]  Robert W Cook,et al.  The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. , 2005, Developmental cell.

[4]  E. D. De Robertis,et al.  Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos , 2005, Development.

[5]  C. Stern Neural induction: old problem, new findings, yet more questions , 2005, Development.

[6]  E. D. De Robertis,et al.  Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. , 2005, Genes & development.

[7]  M. Khokha,et al.  Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. , 2005, Developmental cell.

[8]  S. Fisher,et al.  Twisted gastrulation enhances BMP signaling through chordin dependent and independent mechanisms , 2005, Development.

[9]  H. Spemann,et al.  Versuche zur Analyse der Induktionsmittel in der Embryonalentwicklung , 1932, Naturwissenschaften.

[10]  Shawn C. Little,et al.  Twisted gastrulation promotes BMP signaling in zebrafish dorsal-ventral axial patterning , 2004, Development.

[11]  E. D. De Robertis,et al.  Dorsal-ventral patterning and neural induction in Xenopus embryos. , 2004, Annual review of cell and developmental biology.

[12]  E. Robertis,et al.  Neural Induction in Xenopus: Requirement for Ectodermal and Endomesodermal Signals via Chordin, Noggin, β-Catenin, and Cerberus , 2004, PLoS biology.

[13]  J. Massagué Integration of Smad and MAPK pathways: a link and a linker revisited. , 2003, Genes & development.

[14]  E. D. De Robertis,et al.  Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. , 2003, Genes & development.

[15]  S. Schulte-Merker,et al.  The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. , 2003, Developmental biology.

[16]  T. Hirano,et al.  Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling , 2003, Development.

[17]  M. Kirschner,et al.  The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm , 2003, Development.

[18]  E. D. De Robertis,et al.  Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , 2003, Developmental cell.

[19]  L. Dale,et al.  Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development , 2002, Mechanisms of Development.

[20]  Christof Niehrs,et al.  Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling , 2002, Nature.

[21]  J. Heasman Morpholino oligos: making sense of antisense? , 2002, Developmental biology.

[22]  H. Spemann,et al.  Induction of embryonic primordia by implantation of organizers from a different species. 1923. , 2001, The International journal of developmental biology.

[23]  M. Oelgeschläger,et al.  The establishment of spemann's organizer and patterning of the vertebrate embryo , 2000, Nature Reviews Genetics.

[24]  E. Robertis,et al.  The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling , 2000, Nature.

[25]  Ryan M. Anderson,et al.  The organizer factors Chordin and Noggin are required for mouse forebrain development , 2000, Nature.

[26]  C. Niehrs,et al.  Requirement for anti-dorsalizing morphogenetic protein in organizer patterning , 2000, Mechanisms of Development.

[27]  C. Niehrs,et al.  Synexpression groups in eukaryotes , 1999, Nature.

[28]  C. Niehrs,et al.  Silencing of TGF-β signalling by the pseudoreceptor BAMBI , 1999, Nature.

[29]  R. Beddington,et al.  Axis Development and Early Asymmetry in Mammals , 1999, Cell.

[30]  C. Niehrs,et al.  Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction , 1998, Nature.

[31]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[32]  R. Harland,et al.  The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4 , 1996, Cell.

[33]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[34]  T. Bouwmeester,et al.  Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer , 1996, Nature.

[35]  B. Stillman,et al.  Cold Spring Harbor Laboratory , 1995, Molecular medicine.

[36]  M. Krinks,et al.  Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. , 1995, Development.

[37]  Y. Sasai,et al.  Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus , 1995, Nature.

[38]  P. Wilson,et al.  Induction of epidermis and inhibition of neural fate by Bmp-4 , 1995, Nature.

[39]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[40]  D. Melton,et al.  Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity , 1994, Cell.

[41]  R. Harland,et al.  Neural induction by the secreted polypeptide noggin. , 1993, Science.

[42]  Ken W. Y. Cho,et al.  The homeobox gene goosecoid controls cell migration in Xenopus embryos , 1993, Cell.

[43]  William C. Smith,et al.  Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos , 1992, Cell.

[44]  M. Jamrich,et al.  A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. , 1992, Genes & development.

[45]  P. Good,et al.  The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. , 1992, Genes & development.

[46]  Ken W. Y. Cho,et al.  Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid , 1991, Cell.

[47]  E. D. De Robertis,et al.  Gradient fields and homeobox genes. , 1991, Development.

[48]  Gillian M. Morriss-Kay,et al.  Langman's Medical Embryology , 1991 .

[49]  J. Gurdon,et al.  The heritage of experimental embryology: Hans Spemann and the organizer by Viktor Hamburger, Oxford University Press, 1988. £22.50/$29.95 (196 pages) ISBN 0 19505 110 6 , 1989, Trends in Neurosciences.

[50]  L. Tacke,et al.  Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. , 1989, Cell differentiation and development : the official journal of the International Society of Developmental Biologists.

[51]  J. Slack The heritage of experimental embryology: Hans Spemann and the organizer , 1989, Medical History.

[52]  J. Saint-Jeannet,et al.  Neural induction. , 1986, Archives d'anatomie microscopique et de morphologie experimentale.

[53]  William McGinnis,et al.  Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes , 1984, Cell.

[54]  T.W.Sadler Langman's Medical Embryology , 1969 .

[55]  Arthur Hughes,et al.  Analysis of Development , 1955 .

[56]  Viktor Hamburger,et al.  Analysis of development , 1955 .

[57]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[58]  J. Holtfreter Neural differentiation of ectoderm through exposure to saline solution , 1944 .

[59]  L. G. Barth Neural differentiation without organizer , 1941 .

[60]  R. R. Bensley,et al.  Embryonic Development and Induction , 1938, The Yale Journal of Biology and Medicine.

[61]  T. Morgan Embryology And Genetics , 1934 .

[62]  R. G. Harrison,et al.  Experiments on the development of the fore limb of Amblystoma, a self‐differentiating equipotential system , 1918 .