Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function

[1]  T. Tolker-Nielsen,et al.  Immune Responses to Pseudomonas aeruginosa Biofilm Infections , 2021, Frontiers in Immunology.

[2]  M. Parsek,et al.  The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions , 2020, Journal of Bacteriology.

[3]  C. Khursigara,et al.  The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology , 2019, Pathogens.

[4]  P. Taylor,et al.  The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors , 2019, PLoS pathogens.

[5]  M. Parsek,et al.  The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix , 2019, Nature Communications.

[6]  C. del Fresno,et al.  Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation , 2018, Front. Immunol..

[7]  C. Sen,et al.  Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments , 2018, PLoS pathogens.

[8]  A. Filloux,et al.  Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. , 2018, Current opinion in microbiology.

[9]  Murugesan V. S. Rajaram,et al.  M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. , 2017, Cell reports.

[10]  W. Weis,et al.  Mechanism of pathogen recognition by human dectin-2 , 2017, The Journal of Biological Chemistry.

[11]  Joseph S Lam,et al.  Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion , 2017, Nature Microbiology.

[12]  P. Crocker,et al.  Lectin Receptors Expressed on Myeloid Cells , 2016, Microbiology spectrum.

[13]  N. Kawasaki,et al.  Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells , 2016, The Journal of Biological Chemistry.

[14]  Boo Shan Tseng,et al.  Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix , 2015, Proceedings of the National Academy of Sciences.

[15]  M. Yoneyama,et al.  Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. , 2014, Immunity.

[16]  K. Lewis,et al.  Pseudomonas aeruginosa Biofilms in Disease , 2014, Microbial Ecology.

[17]  R. Saunders,et al.  A Tale of Mice and Men: The WPA, the LSU Indian Room Museum, and the Emergence of Professional Archaeology in the U.S. South , 2014 .

[18]  C. Khursigara,et al.  Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1 , 2014, Journal of bacteriology.

[19]  J. Garcia-Vallejo,et al.  The physiological role of DC-SIGN: a tale of mice and men. , 2013, Trends in immunology.

[20]  Yang Shen,et al.  Purification and Characterization of Biofilm-Associated EPS Exopolysaccharides from ESKAPE Organisms and Other Pathogens , 2013, PloS one.

[21]  T. Karosi,et al.  The presence of CD209 expressing dendritic cells correlates with biofilm positivity in chronic rhinosinusitis with nasal polyposis , 2013, European Archives of Oto-Rhino-Laryngology.

[22]  L. Martínez-Pomares The mannose receptor , 2012, Journal of leukocyte biology.

[23]  Yasuhiko Irie,et al.  Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa , 2012, Proceedings of the National Academy of Sciences.

[24]  P. Howell,et al.  The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. , 2012, Environmental microbiology.

[25]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[26]  S. Gringhuis,et al.  An evolutionary perspective on C‐type lectins in infection and immunity , 2012, Annals of the New York Academy of Sciences.

[27]  K. Knagge,et al.  Mannan structural complexity is decreased when Candida albicans is cultivated in blood or serum at physiological temperature. , 2011, Carbohydrate research.

[28]  T. D. Power,et al.  New Insights into the Structure of (1→3,1→6)-β-D-Glucan Side Chains in the Candida glabrata Cell Wall , 2011, PloS one.

[29]  R. Hancock,et al.  Pseudomonas aeruginosa: all roads lead to resistance. , 2011, Trends in microbiology.

[30]  J. Ravetch,et al.  Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway , 2011, Nature.

[31]  J. Lam,et al.  Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide , 2011, Front. Microbio..

[32]  J. Tschopp,et al.  Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses , 2010, Proceedings of the National Academy of Sciences.

[33]  M. Parsek,et al.  Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA , 2010, Molecular microbiology.

[34]  M. Givskov,et al.  The immune system vs. Pseudomonas aeruginosa biofilms. , 2010, FEMS immunology and medical microbiology.

[35]  S. Akira,et al.  Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. , 2010, Immunity.

[36]  S. Gordon,et al.  Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. , 2010, The Journal of clinical investigation.

[37]  Deborah A. Hogan,et al.  Medically important bacterial–fungal interactions , 2010, Nature Reviews Microbiology.

[38]  R. Samudrala,et al.  Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix , 2010, Molecular microbiology.

[39]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.

[40]  P. Taylor,et al.  Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection , 2009, The Journal of experimental medicine.

[41]  J. Lam,et al.  Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa , 2009, Innate immunity.

[42]  M. Parsek,et al.  Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production , 2009, Molecular microbiology.

[43]  S. Gringhuis,et al.  Signalling through C-type lectin receptors: shaping immune responses , 2009, Nature Reviews Immunology.

[44]  S. Gringhuis,et al.  Innate signaling by the C-type lectin DC-SIGN dictates immune responses , 2008, Cancer Immunology, Immunotherapy.

[45]  P. Vachette,et al.  DC-SIGN Neck Domain Is a pH-sensor Controlling Oligomerization , 2009, The Journal of Biological Chemistry.

[46]  J. Davies,et al.  Bugs, biofilms, and resistance in cystic fibrosis. , 2009, Respiratory care.

[47]  G. Lagoumintzis,et al.  Synergistic regulation of Pseudomonas aeruginosa‐induced cytokine production in human monocytes by mannose receptor and TLR2 , 2009, European journal of immunology.

[48]  J. Chiche,et al.  Dendritic Cells Modulate Lung Response to Pseudomonas aeruginosa in a Murine Model of Sepsis-Induced Immune Dysfunction1 , 2008, The Journal of Immunology.

[49]  R. Modlin,et al.  "Dermal dendritic cells" comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. , 2008, The Journal of investigative dermatology.

[50]  J. Ruland,et al.  Decreased Pathology and Prolonged Survival of Human DC-SIGN Transgenic Mice during Mycobacterial Infection1 , 2008, The Journal of Immunology.

[51]  M. Parsek,et al.  Pseudomonas aeruginosa Psl Is a Galactose- and Mannose-Rich Exopolysaccharide , 2007, Journal of bacteriology.

[52]  A. Simmons,et al.  Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication , 2007, Nature Immunology.

[53]  D. Underhill,et al.  Dectin-2 Is a Pattern Recognition Receptor for Fungi That Couples with the Fc Receptor γ Chain to Induce Innate Immune Responses* , 2006, Journal of Biological Chemistry.

[54]  Richard J. Stillion,et al.  Carbohydrate‐independent recognition of collagens by the macrophage mannose receptor , 2006, European journal of immunology.

[55]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[56]  Jean-Louis Herrmann,et al.  DC-SIGN Induction in Alveolar Macrophages Defines Privileged Target Host Cells for Mycobacteria in Patients with Tuberculosis , 2005, PLoS medicine.

[57]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Dwek,et al.  Glycosylation Influences the Lectin Activities of the Macrophage Mannose Receptor* , 2005, Journal of Biological Chemistry.

[59]  S. Gordon,et al.  Dectin‐2 is predominantly myeloid restricted and exhibits unique activation‐dependent expression on maturing inflammatory monocytes elicited in vivo , 2005, European journal of immunology.

[60]  K. Ariizumi,et al.  Identification and expression profiling of a human C‐type lectin, structurally homologous to mouse dectin‐2 , 2005, Experimental dermatology.

[61]  W. Weis,et al.  Extended Neck Regions Stabilize Tetramers of the Receptors DC-SIGN and DC-SIGNR* , 2005, Journal of Biological Chemistry.

[62]  Y. Kooyk,et al.  DC-SIGN: escape mechanism for pathogens , 2003, Nature Reviews Immunology.

[63]  Daniel A. Mitchell,et al.  A Novel Mechanism of Carbohydrate Recognition by the C-type Lectins DC-SIGN and DC-SIGNR , 2001, The Journal of Biological Chemistry.

[64]  G. Puzo,et al.  Mannosylated Lipoarabinomannans Inhibit IL-12 Production by Human Dendritic Cells: Evidence for a Negative Signal Delivered Through the Mannose Receptor1 , 2001, The Journal of Immunology.

[65]  S. Gordon,et al.  Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity , 2001, European journal of immunology.

[66]  Carl G. Figdor,et al.  DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking , 2000, Nature Immunology.

[67]  R. Ritter,et al.  Cloning of a Second Dendritic Cell-associated C-type Lectin (Dectin-2) and Its Alternatively Spliced Isoforms* , 2000, The Journal of Biological Chemistry.

[68]  M. Nussenzweig,et al.  Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand , 2000, The Journal of experimental medicine.

[69]  C. Figdor,et al.  Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses , 2000, Cell.

[70]  B. Holloway,et al.  Chromosomal genetics of Pseudomonas , 1979 .

[71]  R. B. Parker,et al.  Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. , 1971, The Journal of pharmacology and experimental therapeutics.