Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data

[1]  Bob E. Schutz,et al.  A comparison of coincident GRACE and ICESat data over Antarctica , 2009 .

[2]  R. Dietrich,et al.  Signal and error in mass change inferences from GRACE: the case of Antarctica , 2009 .

[3]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[4]  M. R. van den Broeke,et al.  Elevation Changes in Antarctica Mainly Determined by Accumulation Variability , 2008, Science.

[5]  Eric Rignot,et al.  Recent Antarctic ice mass loss from radar interferometry and regional climate modelling , 2008 .

[6]  On Postglacial Sea Level , 2007 .

[7]  Scott B. Luthcke,et al.  FAST TRACK PAPER: Tide model errors and GRACE gravimetry: towards a more realistic assessment , 2006 .

[8]  D. Sugden,et al.  Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet , 2006 .

[9]  Hansheng Wang,et al.  Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion on a spherical, self-gravitating Maxwell Earth , 2006 .

[10]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[11]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[12]  Bob E. Schutz,et al.  ICESat sea level comparisons , 2005 .

[13]  E. Ivins,et al.  Antarctic glacial isostatic adjustment: a new assessment , 2005, Antarctic Science.

[14]  M. R. van den Broeke,et al.  Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model , 2005, Annals of Glaciology.

[15]  J. Schwander,et al.  Model calculations of the age of firn air across the Antarctic continent , 2004 .

[16]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[17]  E. Ivins,et al.  Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics , 2004 .

[18]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[19]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[20]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[21]  J. Wahr,et al.  A method for separating antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data , 2002 .

[22]  S. Tulaczyk,et al.  Positive Mass Balance of the Ross Ice Streams, West Antarctica , 2002, Science.

[23]  Philippe Huybrechts,et al.  Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles , 2002 .

[24]  G. Denton,et al.  Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. , 2002 .

[25]  K. Lambeck,et al.  Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2 , 2002 .

[26]  Y. M. Wang GSFC00 mean sea surface, gravity anomaly, and vertical gravity gradient from satellite altimeter data , 2001 .

[27]  M. Fang,et al.  Vertical deformation and absolute gravity , 2001 .

[28]  Duncan J. Wingham,et al.  A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance , 2000 .

[29]  Bamber,et al.  Widespread complex flow in the interior of the antarctic ice sheet , 2000, Science.

[30]  M. J. Bentley Volume of Antarctic Ice at the Last Glacial Maximum, and its impact on global sea level change , 1999 .

[31]  D. Vaughan,et al.  Reassessment of net surface mass balance in Antarctica , 1999 .

[32]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[33]  E. Ivins,et al.  Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum , 1998 .

[34]  P. Huybrechts,et al.  A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle , 1996, Annals of Glaciology.

[35]  J. Wahr,et al.  Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth , 1995 .

[36]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[37]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .