Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube $Q\subseteq\mathbb R^m$. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[3]  A. Nerode,et al.  Effective content of field theory , 1979 .

[4]  Klaus Weihrauch,et al.  Computing Schrödinger propagators on Type-2 Turing machines , 2006, J. Complex..

[5]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[6]  Vasco Brattka,et al.  Computability over Topological Structures , 2003 .

[7]  Klaus Weihrauch,et al.  Computable analysis of the abstract Cauchy problem in a Banach space and its applications I , 2007, Math. Log. Q..

[8]  Viggo Stoltenberg-Hansen,et al.  Computable Rings and Fields , 1999, Handbook of Computability Theory.

[9]  Fritz John,et al.  Lectures on advanced numerical analysis , 1967 .

[10]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  Klaus Weihrauch,et al.  Computing the solution of the Korteweg-de Vries equation with arbitrary precision on Turing , 2005, Theor. Comput. Sci..

[12]  Ye.G. D'yakonov,et al.  Introduction to the theory of difference schemes , 1964 .

[13]  A. Mostowski,et al.  Models of axiomatic systems , 1952 .

[14]  Ning Zhong,et al.  Computability of Solutions of the Korteweg-de Vries Equation , 2001, Math. Log. Q..

[15]  Klaus Weihrauch,et al.  A Tutorial on Computable Analysis , 2008 .

[16]  Anil Nerode,et al.  Handbook of Recursive Mathematics , 1998 .

[17]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[18]  Andrzej Mostowski,et al.  On a System of Axioms Which Has no Recursively Enumerable Arithmetic Model , 1953 .

[19]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[20]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[21]  Klaus Weihrauch,et al.  An Algorithm for Computing Fundamental Solutions , 2005, Electron. Notes Theor. Comput. Sci..

[22]  Klaus Weihrauch,et al.  Is wave propagation computable or can wave computers beat the turing machine? , 2002 .

[23]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[24]  Victor L. Selivanov,et al.  Computing the Solution Operators of Symmetric Hyperbolic Systems of PDE , 2009, J. Univers. Comput. Sci..

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[27]  J. Schauder Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen , 1935 .

[28]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .

[29]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[30]  J. V. Tucker,et al.  Effective algebras , 1995, Logic in Computer Science.

[31]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems , 1998, physics/9807053.

[32]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[33]  Liping Liu THEORY OF ELASTICITY , 2012 .

[34]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[35]  Martin Ziegler,et al.  A Computable Spectral Theorem , 2000, CCA.

[36]  Ning Zhong,et al.  Computability of Solutions of the Korteweg-de Vries Equation , 2001 .

[37]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[38]  K F R I E D R I C H S,et al.  Symmetric Hyperbolic Linear Differential Equations , 2014 .

[39]  Yiannis N. Moschovakis,et al.  Notation systems and recursive ordered fields , 1966 .

[40]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.