A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines

Abstract An algorithm is described which allows large scale molecular dynamics simulations to be carried out on a distributed memory parallel computer. The method is a development of a spatial decomposition technique already described [S.Y. Liem, D. Brown and J.H.R. Clarke, Comput. Phys. Commun. 67 (1991) 261] but incorporates decomposition of 3-D space in all three dimensions with link-cell and neighbour table techniques for enhanced efficiency. It is shown that communications between processors can be minimized without incurring the penalties associated with redundant force calculations. The method has been tested on a Fujitsu AP1000 parallel machine with up to 512 processor elements.

[1]  Jill P. Mesirov,et al.  Parallel approaches to short range molecular dynamics simulations , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[2]  Roscoe Giles,et al.  A parallel scalable approach to short-range molecular dynamics on the CM-5 , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[3]  J. E. Boillat,et al.  A dynamic load-balancing algorithm for molecular dynamics simulation on multi-processor systems , 1991 .

[4]  David Brown,et al.  MOLECULAR-DYNAMICS SIMULATIONS ON DISTRIBUTED MEMORY MACHINES , 1991 .

[5]  K. Esselink,et al.  Parallel molecular dynamics on a torus network , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[6]  Rapaport Microscale hydrodynamics: Discrete-particle simulation of evolving flow patterns. , 1987, Physical review. A, General physics.

[7]  Steven J. Plimpton,et al.  Scalable parallel molecular dynamics on MIMD supercomputers , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[8]  David Fincham,et al.  Multicomputer Molecular Dynamics Simulation using Distributed Neighbour Lists , 1991 .

[9]  David Fincham,et al.  Systolic loop methods for molecular dynamics simulation using multiple transputers , 1989 .

[10]  D. C. Rapaport,et al.  Large-scale molecular dynamics simulation using vector and parallel computers , 1988 .

[11]  Yasuhito Tanaka,et al.  Parallelization of AMBER molecular dynamics program for the AP1000 highly parallel computer , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[12]  Filippo Brugé,et al.  On the systolic calculation of all-pairs interactions using transputer arrays , 1991 .

[13]  D. J. Tildesley,et al.  Large Scale Molecular Dynamics on Parallel Computers using the Link-cell Algorithm , 1991 .

[14]  Y. Tanaka,et al.  Molecular dynamics simulation on an AP1000 distributed memory parallel computer , 1992 .

[15]  William Smith,et al.  Molecular dynamics on hypercube parallel computers , 1991 .

[16]  S. L. Fornili,et al.  Concurrent molecular dynamics simulation of spinodal phase transition on transputer arrays , 1990 .

[17]  L. E. Scales,et al.  Simulation of organic liquids using pseudo-pairwise interatomic forces on a toroidal transputer array , 1991 .

[18]  Hiroaki Ishihata,et al.  AP1000 Architecture and Performance of LU Decomposition , 1991, International Conference on Parallel Processing.

[19]  Hiroaki Ishihata,et al.  An architecture of highly parallel computer AP 1000 , 1991, [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings.

[20]  J. Clarke,et al.  Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  David Fincham,et al.  Parallel Computers and Molecular Simulation , 1987 .

[22]  H. G. Petersen,et al.  Molecular dynamics on transputer arrays. I: Algorithm design, programming issues, timing experiments and scaling projections , 1989 .