Assimilation of SST Satellite Images for Estimation of Ocean Circulation Velocity

The objective of this study is to compute the surface circulation velocity from oceanographic image sequences. Data assimilation provides a mathematical solution to combine optimally observations and models. We define a dedicated Image Model consistent with the physical knowledge of ocean dynamics. Satellite images are then assimilated into this model using a variational data assimilation scheme. This technique relies on the adjoint model definition to compute the minimum of a cost function measuring the discrepancy between model's outputs and observations. The method takes into account the physical knowledge of the ocean circulation, which is relevant for explaining images evolution and, in case of missing data due to clouds occlusion or lack of acquisitions, the estimation is still consistent with the physical evolution laws.

[1]  Isabelle Herlin,et al.  Solving ill-posed Image Processing problems using Data Assimilation , 2011, Numerical Algorithms.

[2]  Isabelle Herlin,et al.  Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images , 2008 .

[3]  Nicolas Papadakis,et al.  Image Assimilation for Motion Estimation of Atmospheric Layers with Shallow-Water Model , 2007, ACCV.

[4]  Nicolas Papadakis,et al.  A Consistent Spatio-temporal Motion Estimator for Atmospheric Layers , 2007, SSVM.

[5]  Isabelle Herlin,et al.  Estimation of a Motion Field on Satellite Images from a Simplified Ocean Circulation Model , 2006, 2006 International Conference on Image Processing.

[6]  J. Monnier,et al.  AssImage : étude de techniques d'assimilations de données image dans des modèles de simulation de fluides géophysiques , 2006 .

[7]  Temel Oguz,et al.  Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data , 2003 .

[8]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Guillermo Podestá,et al.  Sea surface velocities from sea surface temperature image sequences: 2. Application to the Brazil-Malvinas Confluence area , 2000 .

[10]  Isabelle Herlin,et al.  A generalized optical flow constraint and its physical interpretation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  David J. Fleet,et al.  Performance of optical flow techniques , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[13]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[14]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[15]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .