Noradrenergic α2A-receptor stimulation in the ventral hippocampus reduces impulsive decision-making

[1]  Arthur P. Shimamura,et al.  Remembering the Past , 2014 .

[2]  J. Ahern,et al.  Remembering the Past , 2013, The Annals of pharmacotherapy.

[3]  Y. Chudasama,et al.  Inhibitory control deficits in rats with ventral hippocampal lesions. , 2013, Cerebral cortex.

[4]  Judy A. Prasad,et al.  Viral Tracing Identifies Parallel Disynaptic Pathways to the Hippocampus , 2013, The Journal of Neuroscience.

[5]  Y. Chudasama,et al.  Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision‐making with a delayed or uncertain outcome , 2013, The European journal of neuroscience.

[6]  A. Goodchild,et al.  Catecholamine receptors differentially mediate impulsive choice in the medial prefrontal and orbitofrontal cortex , 2013, Journal of psychopharmacology.

[7]  Y. Chudasama,et al.  Behavioral / Systems / Cognitive Hippocampal-Prefrontal Cortical Circuit Mediates Inhibitory Response Control in the Rat , 2012 .

[8]  L. Green,et al.  Future decision‐making without episodic mental time travel , 2012, Hippocampus.

[9]  S. Floresco,et al.  Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making , 2012, Neuropsychopharmacology.

[10]  C. Winstanley The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders , 2011, British journal of pharmacology.

[11]  T. Robbins,et al.  Prefrontal and Monoaminergic Contributions to Stop-Signal Task Performance in Rats , 2011, The Journal of Neuroscience.

[12]  Jan Peters,et al.  The neural mechanisms of inter-temporal decision-making: understanding variability , 2011, Trends in Cognitive Sciences.

[13]  Dawn M Eagle,et al.  Dissociable Effects of Lesions to Orbitofrontal Cortex Subregions on Impulsive Choice in the Rat , 2011, The Journal of Neuroscience.

[14]  E. Ciaramelli,et al.  Myopic Discounting of Future Rewards after Medial Orbitofrontal Damage in Humans , 2010, The Journal of Neuroscience.

[15]  Rudolf N Cardinal,et al.  Whisker: A client—server high-performance multimedia research control system , 2010, Behavior research methods.

[16]  C. Perry,et al.  Guanfacine Extended-Release , 2010, Drugs.

[17]  Adam Johnson,et al.  Triple Dissociation of Information Processing in Dorsal Striatum, Ventral Striatum, and Hippocampus on a Learned Spatial Decision Task , 2010, Neuron.

[18]  Tommy Pattij,et al.  Dopamine receptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive choice in rats. , 2010, Cerebral cortex.

[19]  Stan B. Floresco,et al.  Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues , 2010, Psychopharmacology.

[20]  Jan Peters,et al.  Episodic Future Thinking Reduces Reward Delay Discounting through an Enhancement of Prefrontal-Mediotemporal Interactions , 2010, Neuron.

[21]  Danielle L. Graham,et al.  Yohimbine Increases Impulsivity Through Activation of cAMP Response Element Binding in the Orbitofrontal Cortex , 2010, Biological Psychiatry.

[22]  G. Zauberman,et al.  Perception of anticipatory time in temporal discounting. , 2009 .

[23]  W. Pelham,et al.  Effects of methylphenidate on discounting of delayed rewards in attention deficit/hyperactivity disorder. , 2009, Experimental and clinical psychopharmacology.

[24]  M. Walton,et al.  Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task , 2009, The European journal of neuroscience.

[25]  T. Robbins,et al.  The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. , 2009, Annual review of neuroscience.

[26]  N. Cohen,et al.  Declarative memory is critical for sustained advantageous complex decision-making , 2009, Neuropsychologia.

[27]  J. McGough,et al.  Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. , 2009, Journal of the American Academy of Child and Adolescent Psychiatry.

[28]  F. Woermann,et al.  Decision making in patients with temporal lobe epilepsy , 2009, Neuropsychologia.

[29]  M. Delazer,et al.  Impact of ambiguity and risk on decision making in mild Alzheimer's disease , 2008, Neuropsychologia.

[30]  T. Robbins,et al.  Similar Effects of the Selective Noradrenaline Reuptake Inhibitor Atomoxetine on Three Distinct Forms of Impulsivity in the Rat , 2008, Neuropsychopharmacology.

[31]  Selin A. Malkoc,et al.  Discounting Time and Time Discounting: Subjective Time Perception and Intertemporal Preferences , 2008 .

[32]  A. Phillips,et al.  Ventral hippocampal involvement in temporal order, but not recognition, memory for spatial information , 2008, Hippocampus.

[33]  J. Rawlins,et al.  A Role for Dorsal and Ventral Hippocampus in Inter-Temporal Choice Cost-Benefit Decision Making , 2008, Behavioral neuroscience.

[34]  Matthijs A. A. van der Meer,et al.  Integrating hippocampus and striatum in decision-making , 2007, Current Opinion in Neurobiology.

[35]  T. Robbins,et al.  Atomoxetine Improved Response Inhibition in Adults with Attention Deficit/Hyperactivity Disorder , 2007, Biological Psychiatry.

[36]  D. Schacter,et al.  Remembering the past to imagine the future: the prospective brain , 2007, Nature Reviews Neuroscience.

[37]  R. Ptak,et al.  Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices? , 2006, Neuropsychologia.

[38]  M. Walton,et al.  Separate neural pathways process different decision costs , 2006, Nature Neuroscience.

[39]  L. Vanderschuren,et al.  Critical Involvement of Dopaminergic Neurotransmission in Impulsive Decision Making , 2006, Biological Psychiatry.

[40]  C. Swanson,et al.  Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat , 2006, Neuropharmacology.

[41]  M. Farah,et al.  Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards , 2005, Neuropsychologia.

[42]  D. Dougherty,et al.  Acute Yohimbine Increases Laboratory-Measured Impulsivity in Normal Subjects , 2005, Biological Psychiatry.

[43]  R. Cardinal,et al.  Chapter 3: Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats , 2006 .

[44]  J. Sanders,et al.  Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study , 2004, Neuroscience.

[45]  R. Roth,et al.  Noradrenergic α-2 agonists have anxiolytic-like actions on stress-related behavior and mesoprefrontal dopamine biochemistry , 2004, Brain Research.

[46]  A. Arnsten,et al.  Neurobiology of Executive Functions: Catecholamine Influences on Prefrontal Cortical Functions , 2004, Biological Psychiatry.

[47]  T. Robbins,et al.  Contrasting Roles of Basolateral Amygdala and Orbitofrontal Cortex in Impulsive Choice , 2004, The Journal of Neuroscience.

[48]  P. Cowen,et al.  Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity. , 2003, The American journal of psychiatry.

[49]  K. Perry,et al.  Atomoxetine Increases Extracellular Levels of Norepinephrine and Dopamine in Prefrontal Cortex of Rat: A Potential Mechanism for Efficacy in Attention Deficit/Hyperactivity Disorder , 2002, Neuropsychopharmacology.

[50]  S. Southwick,et al.  Yohimbine-induced withdrawal and anxiety symptoms in opioid-dependent patients , 2002, Biological Psychiatry.

[51]  R. Schultz,et al.  A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. , 2001, The American journal of psychiatry.

[52]  T. Robbins,et al.  Impulsive Choice Induced in Rats by Lesions of the Nucleus Accumbens Core , 2001, Science.

[53]  T. Milner,et al.  Hippocampal α2A‐adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes , 1998, The Journal of comparative neurology.

[54]  J. Seamans,et al.  D1 Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat , 1998, The Journal of Neuroscience.

[55]  R. D. Hunt,et al.  The Contribution of α2-Noradrenergic Mechanisms to Prefrontal Cortical Cognitive Function: Potential Significance for Attention-Deficit Hyperactivity Disorder , 1996 .

[56]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Staffan Uhlén,et al.  Comparison of the Binding Activities of Some Drugs on α2A, α2B and α2C‐Adrenoceptors and Non‐Adrenergic Imidazoline Sites in the Guinea Pig , 1995 .

[58]  Mark G. Packard,et al.  Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat , 1994, Brain Research Bulletin.

[59]  E. Eriksson,et al.  Guanfacine as an alpha-2-agonist inducer of growth hormone secretion—a comparison with clonidine , 1993, Psychoneuroendocrinology.

[60]  S. McCune,et al.  Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain , 1993, Neuroscience.

[61]  T. Hökfelt,et al.  Distributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: An in situ hybridization study , 1993, The Journal of comparative neurology.

[62]  J. Wikberg,et al.  Delineation of rat kidney α2A- and α2B-adrenoeeptors with [3H]RX821002 radiollgand binding: computer modelling reveals that guanfacine is an α2A-selective compound , 1991 .

[63]  M. Spedding,et al.  α2‐Adrenoceptor subtypes and imidazoline‐like binding sites in the rat brain , 1990 .

[64]  S. File,et al.  Yohimbine's anxiogenic action: Evidence for noradrenergic and dopaminergic sites , 1989, Pharmacology Biochemistry and Behavior.

[65]  P. Goldman-Rakic,et al.  The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  A. Armario,et al.  Chronic Stress Increases Serotonin and Noradrenaline in Rat Brain and Sensitizes Their Responses to a Further Acute Stress , 1988, Journal of neurochemistry.

[67]  L. Cornish Guanfacine hydrochloride: a centrally acting antihypertensive agent. , 1988, Clinical pharmacy.

[68]  P. Molinoff,et al.  Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Savasta,et al.  Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors , 1986, Neuroscience.

[70]  M. Savasta,et al.  Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390 , 1986, Brain Research.

[71]  A. Schoffelmeer,et al.  Role of Adenylate Cyclase in Presynaptic α2‐Adrenoceptor‐ and μ‐Opioid Receptor‐Mediated Inhibition of [3H]Noradrenaline Release from Rat Brain Cortex Slices , 1986, Journal of neurochemistry.

[72]  A. Schoffelmeer,et al.  Evidence for a presynaptic adenylate cyclase system facilitating [3H]norepinephrine release from rat brain neocortex slices and synaptosomes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  J. N. P. Rawlins,et al.  The effects of delaying reward on choice preference in rats with hippocampal or selective septal lesions , 1985, Behavioural Brain Research.

[74]  M. Dubocovich Presynaptic Alpha‐Adrenoceptors in the Central Nervous System a , 1984, Annals of the New York Academy of Sciences.

[75]  M. Kuhar,et al.  Distribution of α2 agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents , 1984, Brain Research Reviews.

[76]  Ryoichi Nakagawa,et al.  Regional characteristics of stress-induced increases in brain noradrenaline release in rats , 1983, Pharmacology Biochemistry and Behavior.

[77]  Masatoshi Tanaka,et al.  Regional rat brain noradrenaline turnover in response to restraint stress , 1983, Pharmacology Biochemistry and Behavior.

[78]  A. Schoffelmeer,et al.  3H-Noradrenaline release from rat neocortical slices in the absence of extracellular Ca2+ and its presynaptic alpha2-adrenergic modulation , 1983, Naunyn-Schmiedeberg's Archives of Pharmacology.

[79]  F. Bloom,et al.  Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. , 1983, Physiological reviews.

[80]  Masatoshi Tanaka,et al.  Time-related differences in noradrenaline turnover in rat brain regions by stress , 1982, Pharmacology Biochemistry and Behavior.

[81]  L. Swanson,et al.  A direct projection from Ammon's horn to prefrontal cortex in the rat , 1981, Brain Research.

[82]  S. Z. Langer Presynaptic regulation of the release of catecholamines. , 1980, Pharmacological reviews.

[83]  Herve Simon,et al.  Origin of dopaminergic innervation of the rat hippocampal formation , 1980, Neuroscience Letters.

[84]  J. Phillis,et al.  Evidence that clonidine can activate histamine h2-receptors in rat cerebral cortex , 1977, Neuropharmacology.

[85]  F. Bloom,et al.  A radioautographic study of the efferent pathways of the nucleus locus coeruleus , 1974, The Journal of comparative neurology.

[86]  S. Floresco,et al.  Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. , 2014, Cerebral cortex.

[87]  Daeyeol Lee,et al.  Effects of α-2A adrenergic receptor agonist on time and risk preference in primates , 2011, Psychopharmacology.

[88]  P. Kelly,et al.  Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species , 2005, Journal of Neural Transmission / General Section JNT.

[89]  J. Glowinski,et al.  Hippocampo‐prefrontal cortex pathway: Anatomical and electrophysiological characteristics , 2000, Hippocampus.

[90]  J. Wikberg,et al.  Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. , 1995, Pharmacology & toxicology.

[91]  R. D. Hunt,et al.  An open trial of guanfacine in the treatment of attention-deficit hyperactivity disorder. , 1995, Journal of the American Academy of Child and Adolescent Psychiatry.

[92]  U. Schambra,et al.  Distribution of α2-adrenergic receptor subtype gene expression in rat brain , 1994 .

[93]  P. O’Connell,et al.  Clonidine in child and adolescent psychiatry. , 1990, Journal of child and adolescent psychopharmacology.

[94]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[95]  B. Pitt Psychopharmacology , 1968, Mental Health.