Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol–gel-derived titania–Nafion composite films

Abstract A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol–gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania–Nafion composite solution. The hydrophobic CNT in the titania–Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT–titania–Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania–Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT–titania––Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania–Nafion composite without MWCNT, pure Nafion films, and MWCNT–Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).

[1]  Rodney Andrews,et al.  Carbon Nanotube Sol−Gel Composite Materials , 2001 .

[2]  G. Greenway,et al.  Analysis of tricyclic antidepressants using electrogenerated chemiluminescence. , 1999, The Analyst.

[3]  Won-Yong Lee,et al.  Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science , 1997 .

[4]  Han Nim Choi,et al.  Nafion-stabilized magnetic nanoparticles (Fe3O4) for [Ru(bpy)3]2+(bpy = bipyridine) electrogenerated chemiluminescence sensor. , 2005, Chemical communications.

[5]  T. Nieman,et al.  Chemiluminescence biosensors using tris(2,2′-bipyridyl)ruthenium(II) and dehydrogenases immobilized in cation exchange polymers , 1997 .

[6]  D. Meisel,et al.  Luminescence quenching in the cluster network of perfluorosulfonate membrane , 1980 .

[7]  S. Dong,et al.  Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)(3)(2+) multilayer films on ITO electrodes. , 2004, The Analyst.

[8]  Shaojun Dong,et al.  Electrogenerated chemiluminescence from R(bpy)3(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. , 2004, Analytical chemistry.

[9]  X. Chen,et al.  High-Performance Liquid Chromatographic Determination of Ascorbic Acid in Soft Drinks and Apple Juice Using Tris(2,2′-bipyridine)ruthenium(II) Electrochemiluminescence , 1994, Analytical Sciences.

[10]  G. Greenway,et al.  Tris(2,2-bipyridyl)ruthenium (II) chemiluminescence in a microflow injection system for codeine determination , 2000 .

[11]  Won-Yong Lee,et al.  Determination of β-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection , 2002 .

[12]  Shouzhuo Yao,et al.  Carbon Nanotubes-Based Amperometric Cholesterol Biosensor Fabricated Through Layer-by-Layer Technique , 2004 .

[13]  T. Nieman,et al.  Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor , 1993 .

[14]  Jonathan K. Leland,et al.  Electrochemiluminescence-Based Quantitation of Classical Clinical Chemistry Analytes , 1996 .

[15]  Allen J. Bard,et al.  Polymer Films on Electrodes. 5. Electrochemistry and Chemiluminescence at Nafion-Coated Electrodes , 1981 .

[16]  John H. T. Luong,et al.  Solubilization of Multiwall Carbon Nanotubes by 3‐Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer , 2004 .

[17]  Federica Valentini,et al.  Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. , 2003, Analytical chemistry.

[18]  J. Ahn,et al.  Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors , 2003 .

[19]  Jinkyu Lee,et al.  Organosilicate thin film containing Ru(bpy)32+ for an electrogenerated chemiluminescence (ECL) sensor , 2003 .

[20]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[21]  Yuehe Lin,et al.  Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. , 2003, Journal of the American Chemical Society.

[22]  T. Nieman,et al.  Determination of erythromycin in urine and plasma using microbore liquid chromatography with tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. , 1997, Journal of chromatography. B, Biomedical sciences and applications.

[23]  Zhennan Gu,et al.  Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes , 2002 .

[24]  Zu,et al.  Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity , 2000, Analytical chemistry.

[25]  Collinson,et al.  Electrogenerated chemiluminescence of tris (2,2'-bipyridyl)ruthenium(II) ion-exchanged in nafion-silica composite films , 2000, Analytical chemistry.

[26]  H. Abruña,et al.  Electrogenerated chemiluminescence. 40. A chemiluminescent polymer based on the tris(4-vinyl-4'-methyl-2,2'-bipyridyl)ruthenium(II) system , 1982 .

[27]  Won-Yong Lee,et al.  Evaluation of use of tris(2,2'-bipyridyl)ruthenium(III) as a chemiluminescent reagent for quantitation in flowing streams , 1995 .

[28]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[29]  Jonathan K. Leland,et al.  Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine , 1990 .

[30]  T. Nieman,et al.  Chemiluminescence detection using regenerable tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion. , 1992, Analytical chemistry.

[31]  Neil W. Barnett,et al.  Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent , 1999 .

[32]  M. Kreft,et al.  Cathophoresis paint insulated carbon fibre ultramicro disc electrode and its application to in vivo amperometric monitoring of quantal secretion from single rat melanotrophs , 1999 .

[33]  S. Dong,et al.  Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2 '-bipyridyl)ruthenium(II) multilayer films on indium tin oxide electrodes , 2004 .

[34]  A. Bard,et al.  Electrogenerated chemiluminescent determination of oxalate. , 1983, Analytical chemistry.

[35]  A. Bard,et al.  Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals. , 2002, Journal of the American Chemical Society.

[36]  A. Knight,et al.  Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review , 1996 .

[37]  Lei Su,et al.  Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. , 2004, Analytical chemistry.

[38]  Donald R. Bobbitt,et al.  Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridyl)ruthenium(III) with amino acids , 1992 .

[39]  Han Nim Choi,et al.  Electrogenerated chemiluminescence from tris(2,2'-bipyridyl)ruthenium(II) immobilized in titania-perfluorosulfonated ionomer composite films. , 2003, Analytical chemistry.

[40]  K. Uchikura,et al.  Chemiluminescence of Tryptophan with Electrogenerated Tris(2,2′-bipyridine)ruthenium(III) , 1991 .

[41]  Joseph Wang,et al.  Carbon nanotube/teflon composite electrochemical sensors and biosensors. , 2003, Analytical chemistry.

[42]  J. Rusling,et al.  Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films. , 2003, Journal of the American Chemical Society.

[43]  Allen J. Bard,et al.  Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride , 1972 .

[44]  Charles R. Martin,et al.  Polymer films on electrodes. 9. Electron and mass transfer in Nafion films containing tris(2,2'-bipyridine)ruthenium(2+) , 1982 .

[45]  C. Hogan,et al.  Electrochemiluminescent metallopolymer coatings: combined light and current detection in flow injection analysis. , 2000, Analytical chemistry.

[46]  D. R. Bobbitt,et al.  Effect of pH on the reaction of tris(2,2'-bipyridyl)ruthenium(III) with amino-acids: Implications for their detection. , 1991, Talanta.

[47]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[48]  Pastore,et al.  A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)(3)2+ in aqueous solution , 2000, Analytical chemistry.

[49]  H. Cui,et al.  Determination of adrenaline by using inhibited Ru(bpy)32+ electrochemiluminescence , 2002 .

[50]  N. Danielson,et al.  Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) , 1987 .