Quantification of vocal fold motion using echography: application to recurrent nerve paralysis detection

Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the conventional way to detect RP. We suggest a new approach based on laryngeal ultrasound and a specific data analysis was designed to help with the automated detection of RP. Ten subjects were enrolled for this feasibility study: four controls, three patients with RP and three patients without RP according to nasal endoscopy. The ultrasound protocol was based on a ten seconds B-mode acquisition in a coronal plane during normal breathing. Image processing included three steps: 1) automated detection of two consecutive closing and opening images, corresponding to extreme positions of vocal folds in the sequence of B-mode images, using principal component analysis of the image sequence; 2) positioning of three landmarks and robust tracking of these points using a multi-pyramidal refined optical flow approach; 3) estimation of quantitative parameters indicating left and right fractions of mobility, and motion symmetry. Results provided by automated image processing were compared to those obtained by an expert. Detection of extreme images was accurate; tracking of landmarks was reliable in 80% of cases. Motion symmetry indices showed similar values for controls and patients without RP. Fraction of mobility was reduced in cases of RP. Thus, our CAD system helped in the detection of RP. Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of recurrent nerve paralysis and could be proposed as a first–line method.