Spectral embedding of graphs

In this paper we explore how to embed symbolic relational graphs with unweighted edges in a pattern-space. We adopt a graph-spectral approach. We use the leading eigenvectors of the graph adjacency matrix to define eigenmodes of the adjacency matrix. For each eigenmode, we compute vectors of spectral properties. These include the eigenmode perimeter, eigenmode volume, Cheeger number, inter-mode adjacency matrices and intermode edge-distance. We embed these vectors in a pattern-space using two contrasting approaches. The first of these involves performing principal or independent components analysis on the covariance matrix for the spectral pattern vectors. The second approach involves performing multidimensional scaling on the L2 norm for pairs of pattern vectors. We illustrate the utility of the embedding methods on neighbourhood graphs representing the arrangement of corner features in 2D images of 3D polyhedral objects. Two problems are investigated. The first of these is the clustering of graphs representing distinct objects viewed from different directions. The second is the identification of characteristic views of single objects. These two studies reveal that both embedding methods result in well-structured view spaces for graph-data extracted from 2D views of 3D objects.

[1]  Linda G. Shapiro,et al.  3D Object Recognition and Pose with Relational Indexing , 2000, Comput. Vis. Image Underst..

[2]  H. Freeman,et al.  Object recognition based on characteristic view classes , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[3]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  BunkeH. Error Correcting Graph Matching , 1999 .

[5]  Benjamin B. Kimia,et al.  3D Object Recognition Using Shape Similarity-Based Aspect Graph , 2001, ICCV.

[6]  Jitendra Malik,et al.  Computing the Aspect Graph for Line Drawings of Polyhedral Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[8]  David J. Kriegman,et al.  Computing exact aspect graphs of curved objects: Algebraic surfaces , 1990, International Journal of Computer Vision.

[9]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[10]  Harry G. Barrow,et al.  Subgraph Isomorphism, Matching Relational Structures and Maximal Cliques , 1976, Inf. Process. Lett..

[11]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[12]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[13]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[16]  B. Kimia,et al.  3D object recognition using shape similiarity-based aspect graph , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  David J. Kriegman Computing stable poses of piecewise smooth objects , 1992, CVGIP Image Underst..

[18]  Hiroshi Murase,et al.  Illumination Planning for Object Recognition Using Parametric Eigenspaces , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Trevor F. Cox,et al.  Nonmetric multidimensional scaling , 2000 .

[21]  T. Hofmann,et al.  Correction to "Pairwise Data Clustering by Deterministic Annealing" , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  David J. Kriegman,et al.  Computing exact aspect graphs of curved objects: Solids of revolution , 2004, International Journal of Computer Vision.

[23]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[25]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Edwin R. Hancock,et al.  Bayesian graph edit distance , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[27]  Sylvain Petitjean,et al.  The enumerative geometry of projective algebraic surfaces and the complexity of aspect graphs , 1996, International Journal of Computer Vision.

[28]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[29]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[30]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[31]  Joachim H. Rieger,et al.  The Geometry of View Space of Opaque Objects Bounded by Smooth Surfaces , 1990, Artif. Intell..

[32]  Edwin R. Hancock,et al.  Efficiently Computing Weighted Tree Edit Distance Using Relaxation Labeling , 2001, EMMCVPR.

[33]  Benoit Huet,et al.  Shape recognition from large image libraries by inexact graph matching , 1999, Pattern Recognit. Lett..

[34]  Allen M. Waxman,et al.  Adaptive 3-D Object Recognition from Multiple Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  K. Boyer,et al.  Organizing Large Structural Modelbases , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[38]  David G. Lowe,et al.  Probabilistic Models of Appearance for 3-D Object Recognition , 2000, International Journal of Computer Vision.

[39]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[40]  Raashid Malik,et al.  Angle Densities and Recognition of 3D Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Keiichi Abe,et al.  Recognizing 3D Objects by Using Models Learned Automatically from 2D Training Images , 2000, Int. J. Pattern Recognit. Artif. Intell..

[42]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  HofmannThomas,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997 .

[44]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .