Intersubband quantum-box semiconductor lasers

It is shown that semiconductor lasers utilizing intersubband transitions in quantum boxes, so-called intersubband quantum-box (IQB) lasers, can have significantly lower threshold current densities and operating voltages than quantum cascade (QC) lasers. In order to achieve this result, an enhancement factor of about 20 in the LO-phonon-assisted electron relaxation time is necessary. The increased gain for the radiative stage in an IQB laser eliminates the need for a multiradiative-stage structure (typically 25 stages in QC lasers). In turn, the electron injector and Bragg mirror regions on either side of the active region can be separately optimized. Due to their inherently lower input power requirements, IQB lasers operating in the mid-IR wavelength range should be capable of higher average-output powers than QC lasers at all temperatures. Furthermore, continuous-wave (CW) operation at room temperature with high wallplug efficiency becomes possible.

[1]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[2]  L. Mawst,et al.  1.6 W continuous-wave coherent power from large-index-step (Δn≈0.1) near-resonant, antiguided diode laser arrays , 2000 .

[3]  J. Faist,et al.  High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature , 1996 .

[4]  J. Chyi,et al.  Unstrained In0.3Ga0.7As/In0.29Al0.71As resonant tunnelling diodes grown on GaAs , 1994 .

[5]  Masahiro Asada,et al.  Chapter 2 – INTRABAND RELAXATION EFFECT ON OPTICAL SPECTRA , 1993 .

[6]  Andreas Hoffmann,et al.  Excited states and energy relaxation in stacked InAs/GaAs quantum dots , 1998 .

[7]  High reproducibility for deep-quantum-well resonant tunnelling diodes grown by metal organic chemical vapour deposition , 1999 .

[8]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[9]  Miller,et al.  Band nonparabolicity effects in semiconductor quantum wells. , 1987, Physical review. B, Condensed matter.

[10]  Carlo Sirtori,et al.  High-power continuous-wave quantum cascade lasers , 1998 .

[11]  Yuji Ando,et al.  Calculation of transmission tunneling current across arbitrary potential barriers , 1987 .

[12]  J. Katz,et al.  Evaluation of the feasibility of a far‐infrared laser based on intersubband transitions in GaAs quantum wells , 1989 .

[13]  Dan Botez,et al.  Intersubband laser design using a quantum box array , 1997, Photonics West.

[14]  Dan Botez,et al.  0.45 W diffraction-limited beam and single-frequency operation from antiguided phase-locked laser array with distributed feedback grating , 1998 .

[15]  Carlo Sirtori,et al.  Continuous-wave quantum cascade lasers in the 4- to 10-um wavelength region , 1996, Photonics West.

[16]  C. Weisbuch,et al.  Radiative recombination in GaAs‐AlxGa1−xAs quantum dots , 1992 .

[17]  Stephen R. Forrest,et al.  OPTICS 2901 Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation , 1994 .

[18]  T. Makino,et al.  MAXIMUM OUTPUT POWER AND MAXIMUM OPERATING TEMPERATURE OF QUANTUM WELL LASERS , 1997 .

[19]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[20]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[21]  Ned S. Wingreen,et al.  Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser , 1997 .

[22]  Akira Iketani,et al.  980-nm aluminum-free InGaAs/InGaAsP/InGaP GRIN-SCH SL-QW lasers , 1994 .

[23]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[24]  L. Mawst,et al.  High peak-current-density strained-layer In0.3Ga0.7As/Al0.8Ga0.2As resonant tunneling diodes grown by metal-organic chemical vapor deposition , 1997 .

[25]  Federico Capasso,et al.  Dependence of the device performance on the number of stages in quantum-cascade lasers , 1999 .

[26]  T. Ohtoshi,et al.  Optical line shape functions in quantum-well and quantum-wire structures , 1991 .

[27]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[28]  Cho,et al.  Quantum cascade lasers without intersubband population inversion. , 1996, Physical review letters.

[29]  Jerry Lopez,et al.  1.6-W cw coherent power from large-index-step (Δ n=0.1) antiguided laser arrays , 1999, Photonics West.

[30]  Carlo Sirtori,et al.  VERTICAL TRANSITION QUANTUM CASCADE LASER WITH BRAGG CONFINED EXCITED STATE , 1995 .

[31]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[32]  Ramon U. Martinelli,et al.  High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers , 1998 .

[33]  Dan Botez,et al.  1.1 W continuous-wave, narrow spectral width (<1 Å) emission from broad-stripe, distributed-feedback diode lasers (λ=0.893 μm) , 1998 .

[34]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[35]  Lam,et al.  Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers. , 1994, Physical review. B, Condensed matter.

[36]  J. Faist,et al.  Room temperature mid-infrared quantum cascade lasers , 1996 .

[37]  Rajaram Bhat,et al.  High-Performance Uncooled 1.3-pm AlxGayIn 1 - Ix: - As/InP Strained-Layer Quantum-Well Lasers for Subscriber Loop Applications , 1994 .

[38]  Carlo Sirtori,et al.  Mid-IR room temperature quantum cascade lasers , 1997, Photonics West.

[39]  J. Singh,et al.  Possibility of room temperature intra-band lasing in quantum dot structures placed in high-photon density cavities , 1996, IEEE Photonics Technology Letters.