Constraint-based simulation of multiple interactive elemental cycles in biogeochemical systems

Abstract Simulating multiple linked elemental cycles is a frontier in the field of biogeochemistry. The Generalized Algorithm for Nutrient, Growth, Stoichiometric and Thermodynamic Analysis (GANGSTA) is a software framework that automates the instantiation of formalized, user-defined conceptual models of linked elemental cycles as simulation model code. The GANGSTA employs first principles of stoichiometry and thermodynamics to generate models that simulate any suite of elemental cycles, compounds, metabolic processes, and microorganisms. Results demonstrated, e.g., that simulating the oxygen (O) cycle, rather than oxic versus anoxic conditions, fundamentally altered carbon (C) and nitrogen (N) cycling - despite holding the compounds and processes involved in the C and N cycles constant. Additionally, incorporating the sulfur (S) cycle substantively changed C and N cycling, largely via shifts in the O cycle. Thus, emergent dynamics from GANGSTA-derived models can aid in the development of hypotheses to describe the specific mechanisms of interdependence among linked elemental cycles.

[1]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[2]  D. Fell,et al.  Is maximization of molar yield in metabolic networks favoured by evolution? , 2008, Journal of theoretical biology.

[3]  Jérémie Bourdon,et al.  A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems , 2017, PloS one.

[4]  J. Vallino,et al.  The Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited. , 2016, Annual review of marine science.

[5]  Peter E. Thornton,et al.  Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls , 2000 .

[6]  E. Bernhardt,et al.  A generalized optimization model of microbially driven aquatic biogeochemistry based on thermodynamic, kinetic, and stoichiometric ecological theory , 2014 .

[7]  E. Bernhardt,et al.  Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. , 2015, Ecology letters.

[8]  M. Kaspari,et al.  Biogeochemistry and Geographical Ecology: Embracing All Twenty-Five Elements Required to Build Organisms* , 2016, The American Naturalist.

[9]  C. Chen,et al.  Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas , 1996 .

[10]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[11]  Brian P. Kennedy,et al.  THERMODYNAMIC CONSTRAINTS ON NITROGENTRANSFORMATIONS AND OTHER BIOGEOCHEMICALPROCESSES AT SOIL–STREAM INTERFACES , 1998 .

[12]  Brian P. Kennedy,et al.  THERMODYNAMIC CONSTRAINTS ON NITROGEN TRANSFORMATIONS AND OTHER BIOGEOCHEMICAL PROCESSES AT SOIL-STREAM INTERFACES , 1998 .

[13]  W. Schlesinger,et al.  Introduction to coupled biogeochemical cycles , 2011 .

[14]  Wendy H. Yang,et al.  Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems , 2011 .

[15]  Orkun S. Soyer,et al.  Challenges in microbial ecology: building predictive understanding of community function and dynamics , 2016, The ISME Journal.

[16]  Costas D. Maranas,et al.  OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities , 2012, PLoS Comput. Biol..

[17]  Davey L. Jones,et al.  Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes? , 2016, Front. Microbiol..

[18]  E. D. Schneider,et al.  Complexity and thermodynamics: Towards a new ecology , 1994 .

[19]  James H. Brown,et al.  Linking the global carbon cycle to individual metabolism , 2005 .

[20]  P. Visscher,et al.  Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes , 2003 .

[21]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[22]  Sven E. Jørgensen,et al.  A New Ecology: Systems Perspective , 2007 .

[23]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[24]  F. Mackenzie,et al.  C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change , 1993 .

[25]  K. Rogers,et al.  Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy , 2003 .

[26]  Brian D. Fath,et al.  Application of thermodynamic principles in ecology , 2004 .

[27]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[28]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[29]  W. Parton,et al.  Dynamics of C, N, P and S in grassland soils: a model , 1988 .

[30]  C. Field,et al.  Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications , 1999 .

[31]  J. Galloway,et al.  An Earth-system perspective of the global nitrogen cycle , 2008, Nature.

[32]  Abraham Lerman,et al.  Geochemical Processes: Water and Sediment Environments , 1979 .

[33]  J. Vallino Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  E. Rastetter Modeling coupled biogeochemical cycles , 2011 .

[35]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[36]  M. Scheffer,et al.  Predicting microbial nitrogen pathways from basic principles. , 2011, Environmental microbiology.

[37]  D. Schrag,et al.  Limitations on Limitation , 2018 .

[38]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[39]  Claes Wohlin,et al.  Experimentation in Software Engineering , 2012, Springer Berlin Heidelberg.

[40]  Ali R. Zomorrodi,et al.  d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. , 2014, ACS synthetic biology.

[41]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[42]  J. Benstead,et al.  Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives , 2005 .