Point-Based Light Transport for Participating Media with Refractive Boundaries

Illumination effects in translucent materials are a combination of several physical phenomena: absorption and scattering inside the material, refraction at its surface. Because refraction can focus light deep inside the material, where it will be scattered, practical illumination simulation inside translucent materials is difficult. In this paper, we present an a Point-Based Global Illumination method for light transport on translucent materials with refractive boundaries. We start by placing volume light samples inside the translucent material and organising them into a spatial hierarchy. At rendering, we gather light from these samples for each camera ray. We compute separately the samples contributions to single, double and multiple scattering, and add them. Our approach provides high-quality results, comparable to the state of the art, with significant speed-ups (from 9 x to 60 x depending on scene complexity) and a much smaller memory footprint.

[1]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[2]  Yu-Ting Tsai,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[3]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[4]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[5]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[6]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[7]  K. Bala,et al.  Single scattering in refractive media with triangle mesh boundaries , 2009, SIGGRAPH 2009.

[8]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[9]  S. Nayar,et al.  An empirical BSSRDF model , 2009, SIGGRAPH 2009.

[10]  Shree K. Nayar,et al.  Acquiring scattering properties of participating media by dilution , 2006, SIGGRAPH 2006.

[11]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[12]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[13]  Derek Nowrouzezahrai,et al.  Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.

[14]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[15]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[16]  Shi-Min Hu,et al.  Anisotropic spherical Gaussians , 2013, ACM Trans. Graph..

[17]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, SIGGRAPH 2011.

[18]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[19]  Rui Wang,et al.  Accurate Translucent Material Rendering under Spherical Gaussian Lights , 2012, Comput. Graph. Forum.

[20]  Nicolas Holzschuch,et al.  Accurate Computation of Single Scattering in Participating Media with Refractive Boundaries , 2015, Comput. Graph. Forum.

[21]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[22]  Toshiya Hachisuka,et al.  Directional Dipole Model for Subsurface Scattering , 2014, ACM Trans. Graph..

[23]  K. Bala,et al.  Multidimensional lightcuts , 2006, SIGGRAPH 2006.

[24]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[25]  Matthias Zwicker,et al.  The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.

[26]  Adam Arbree,et al.  Single‐pass Scalable Subsurface Rendering with Lightcuts , 2008, Comput. Graph. Forum.

[27]  Tamy Boubekeur,et al.  Eurographics Symposium on Rendering 2015 Wavelet Point-based Global Illumination , 2022 .

[28]  Matthias Zwicker,et al.  Progressive photon beams , 2011, ACM Trans. Graph..