Predictive Distributions of Outstanding Liabilities in General Insurance

ABSTRACT This paper extends the methods introduced in England & Verrall (2002), and shows how predictive distributions of outstanding liabilities in general insurance can be obtained using bootstrap or Bayesian techniques for clearly defined statistical models. A general procedure for bootstrapping is described, by extending the methods introduced in England & Verrall (1999), England (2002) and Pinheiro et al. (2003). The analogous Bayesian estimation procedure is implemented using Markov-chain Monte Carlo methods, where the models are constructed as Bayesian generalised linear models using the approach described by Dellaportas & Smith (1993). In particular, this paper describes a way of obtaining a predictive distribution from recursive claims reserving models, including the well known model introduced by Mack (1993). Mack's model is useful, since it can be used with data sets which exhibit negative incremental amounts. The techniques are illustrated with examples, and the resulting predictive distributions from both the bootstrap and Bayesian methods are compared.

[1]  Richard Verrall,et al.  An investigation into stochastic claims reserving models and the chain-ladder technique , 2000 .

[2]  A. E. Renshaw Claims reserving by joint modelling. , 1996 .

[3]  M. Mendoza,et al.  “Principal Applications of Bayesian Methods in Actuarial Science: A Perspective”, Udi E. Makov, October 2001 , 2001 .

[4]  Jim Albert,et al.  A Bayesian approach to some overdispersion models , 1989 .

[5]  P. England,et al.  Stochastic Claims Reserving in General Insurance , 2002, British Actuarial Journal.

[6]  Scott L. Zeger,et al.  Bootstrapping generalized linear models , 1991 .

[7]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[8]  G. Taylor REGRESSION MODELS IN CLAIMS ANALYSIS I: THEORY , 1999 .

[9]  Thomas Mack,et al.  A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR Claims Reserves , 1991, ASTIN Bulletin.

[10]  Richard Verrall,et al.  A Stochastic Model Underlying the Chain-Ladder Technique , 1998, British Actuarial Journal.

[11]  Petros Dellaportas,et al.  Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty , 2002 .

[12]  P. D. England,et al.  Addendum to “Analytic and bootstrap estimates of prediction errors in claims reserving” , 2002 .

[13]  A. F. M. Smith,et al.  Bayesian methods in actuarial science , 1996 .

[14]  Frank Ashe,et al.  An Essay at Measuring the Variance of Estimates of Outstanding Claim Payments , 1986, ASTIN Bulletin.

[15]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[16]  B. Mallick,et al.  Generalized Linear Models : A Bayesian Perspective , 2000 .

[17]  Peter Congdon,et al.  Applied Bayesian Modelling , 2003 .

[18]  P. England,et al.  Analytic and bootstrap estimates of prediction errors in claims reserving , 1999 .

[19]  Jan Dhaene,et al.  Modern Actuarial Risk Theory , 2001 .

[20]  E. Arjas,et al.  Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach , 1996, ASTIN Bulletin.

[21]  Enrique de Alba,et al.  Bayesian Estimation of Outstanding Claim Reserves , 2002 .

[22]  Udi E. Makov,et al.  Principal Applications of Bayesian Methods in Actuarial Science , 2001 .

[23]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[24]  Paulo J. R. Pinheiro,et al.  BOOTSTRAP METHODOLOGY IN CLAIM RESERVING , 2003 .

[25]  David P. M. Scollnik,et al.  Actuarial Modeling with MCMC and BUGs , 2001 .

[26]  T. Mack Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates , 1993, ASTIN Bulletin.

[27]  Richard Verrall,et al.  A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving , 2004 .

[28]  Greg Taylor,et al.  Second moments of estimates of outstanding claims , 1983 .

[29]  G. Taylor,et al.  Loss Reserving: An Actuarial Perspective , 2000 .

[30]  Julian Lowe A Practical Guide To Measuring Reserve Variability Using: Bootstrapping;, Operational Time And A Distribution-Free Approach , 2004 .

[31]  Adrian F. M. Smith,et al.  Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .

[32]  Stuart A. Klugman Bayesian Statistics in Actuarial Science , 1992 .

[33]  David P. M. Scollnik “A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving,” R. J. Verrall, July 2004 , 2005 .

[34]  Richard Verrall,et al.  Incorporating expert opinion into a stochastic model for the chain-ladder technique , 2005 .