The genomic landscape of reference genomes of cultivated human gut bacteria

[1]  M. Göker,et al.  Validation List no. 209. Valid publication of new names and new combinations effectively published outside the IJSEM. , 2023, International journal of systematic and evolutionary microbiology.

[2]  T. Riedel,et al.  A taxonomic note on the genus Prevotella: Description of four novel genera and emended description of the genera Hallella and Xylanibacter. , 2022, Systematic and applied microbiology.

[3]  Donovan H. Parks,et al.  GTDB-Tk v2: memory friendly classification with the genome taxonomy database , 2022, bioRxiv.

[4]  A. Kurilshikov,et al.  Environmental factors shaping the gut microbiome in a Dutch population , 2022, Nature.

[5]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[6]  M. Stares,et al.  The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping , 2021, Cell host & microbe.

[7]  Natalia N. Ivanova,et al.  Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome , 2021, Nature Microbiology.

[8]  Suisha Liang,et al.  A transomic cohort as a reference point for promoting a healthy human gut microbiome , 2021, Medicine in Microecology.

[9]  Yuguang Zhou,et al.  Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank , 2020, Microbiome.

[10]  Sean M. Kearney,et al.  Elevated rates of horizontal gene transfer in the industrialized human microbiome , 2021, Cell.

[11]  M. Hattori,et al.  Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria , 2021, Nature communications.

[12]  Jinfang Zheng,et al.  dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates , 2020, Nucleic Acids Res..

[13]  R. Finn,et al.  Massive expansion of human gut bacteriophage diversity , 2020, Cell.

[14]  Liang Xiao,et al.  Taxonomic Description and Genome Sequence of Christensenella intestinihominis sp. nov., a Novel Cholesterol-Lowering Bacterium Isolated From Human Gut , 2020, bioRxiv.

[15]  D. Z. Sousa,et al.  Innovations to culturing the uncultured microbial majority , 2020, Nature Reviews Microbiology.

[16]  Fei Gao,et al.  CNGBdb: China National GeneBank DataBase. , 2020, Yi chuan = Hereditas.

[17]  Robert D. Finn,et al.  A unified catalog of 204,938 reference genomes from the human gut microbiome , 2020, Nature Biotechnology.

[18]  M. Arumugam,et al.  Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways , 2020, Nature Communications.

[19]  F. Bäckhed,et al.  From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. , 2020, Molecular cell.

[20]  Aina Gotoh,et al.  Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules , 2020, Microorganisms.

[21]  Fei Gao,et al.  CNSA: a data repository for archiving omics data , 2020, bioRxiv.

[22]  P. Jeffrey,et al.  A metagenomic strategy for harnessing the chemical repertoire of the human microbiome , 2019, Science.

[23]  B. Baker,et al.  Diversity, Ecology, and Prevalence of Antimicrobials in Nature , 2019, Front. Microbiol..

[24]  J. Banfield,et al.  Accurate and complete genomes from metagenomes , 2019, bioRxiv.

[25]  Marnix H. Medema,et al.  A computational framework to explore large-scale biosynthetic diversity , 2019, Nature Chemical Biology.

[26]  Sebastian L Riedel,et al.  Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis , 2019, Front. Microbiol..

[27]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[28]  Sean M. Kearney,et al.  A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research , 2019, Nature Medicine.

[29]  M. Levy,et al.  New Approaches to Microbiome-Based Therapies , 2019, mSystems.

[30]  Evelien M. Adriaenssens,et al.  Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks , 2019, Nature Biotechnology.

[31]  Hiroyuki Ogata,et al.  KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold , 2019, bioRxiv.

[32]  Christine L. Sun,et al.  Clades of huge phages from across Earth’s ecosystems , 2019, bioRxiv.

[33]  Suisha Liang,et al.  1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses , 2019, Nature Biotechnology.

[34]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.

[35]  Brian C. Thomas,et al.  Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis , 2018, Nature.

[36]  M. Borodovsky,et al.  Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes , 2018, Genome research.

[37]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[38]  Georgios A. Pavlopoulos,et al.  Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection , 2018, Nature Biotechnology.

[39]  Cindy J. Castelle,et al.  Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life , 2018, Cell.

[40]  P. Thomson,et al.  Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. , 2017, Food microbiology.

[41]  J. Chun,et al.  Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies , 2017, International journal of systematic and evolutionary microbiology.

[42]  Kai Blin,et al.  antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification , 2017, Nucleic Acids Res..

[43]  Christopher A. Voigt,et al.  Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases , 2017, Cell.

[44]  S. Lynch,et al.  The Human Intestinal Microbiome in Health and Disease. , 2016, The New England journal of medicine.

[45]  D. van Sinderen,et al.  Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways , 2016, Scientific Reports.

[46]  Steven Salzberg,et al.  Bracken: Estimating species abundance in metagenomics data , 2016, bioRxiv.

[47]  Richard H. Baltz,et al.  Natural product discovery: past, present, and future , 2016, Journal of Industrial Microbiology & Biotechnology.

[48]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[49]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[50]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[51]  Jiyao Li,et al.  Identification and Functional Analysis of Genome Mutations in a Fluoride-Resistant Streptococcus mutans Strain , 2015, PloS one.

[52]  Peter Cimermancic,et al.  A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics , 2014, Cell.

[53]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[54]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[55]  Bernard Henrissat,et al.  The abundance and variety of carbohydrate-active enzymes in the human gut microbiota , 2013, Nature Reviews Microbiology.

[56]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[57]  H. Flint,et al.  Microbial degradation of complex carbohydrates in the gut , 2012, Gut microbes.

[58]  B. Weimer,et al.  Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. , 2011, Cell host & microbe.

[59]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[60]  B. Hall,et al.  Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations. , 2009, Molecular biology and evolution.

[61]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[62]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[63]  E. Stackebrandt Taxonomic parameters revisited : tarnished gold standards , 2006 .

[64]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[65]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[66]  M. Fons,et al.  Ruminococcin A, a New Lantibiotic Produced by aRuminococcus gnavus Strain Isolated from Human Feces , 2001, Applied and Environmental Microbiology.