Robust Line-Segment Extraction using Genetic Algorithms

Success in scene interpretation in high level computer vision depends heavily on the quality of features derived from the low level stages of processing. We describe an optimisation process for robust low level feature extraction based on Genetic Optimisation. The fitness function is a performance--Momeasure which reflects the quality of an extracted set of features. We shall present some results and compare them with a Hill-Climbing optimisation approach.

[1]  J Kittler,et al.  Hypothesis Generation and Veriication Using Complex Feedback Strategies for Object Recognition Hypothesis Generation and Veriication Using Complex Feedback Strategies for Object Recognition , 2007 .

[2]  Josef Kittler,et al.  A Performance Measure for Boundary Detection Algorithms , 1996, Comput. Vis. Image Underst..

[3]  Jan-Olof Eklundh,et al.  A head-eye system - Analysis and design , 1992, CVGIP Image Underst..

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Evelyne Lutton,et al.  A genetic algorithm for the detection of 2D geometric primitives in images , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[6]  Majid Mirmehdi,et al.  Genetic optimisation of the image feature extraction process , 1997, Pattern Recognit. Lett..

[7]  Josef Kittler,et al.  A Hough transform algorithm with a 2D hypothesis testing kernel , 1993 .

[8]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Earl K. Miller,et al.  The interaction of neural systems for attention and memory , 1994 .

[10]  Martin D. Levine,et al.  Geometric Primitive Extraction Using a Genetic Algorithm , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Suchendra M. Bhandarkar,et al.  An edge detection technique using genetic algorithm-based optimization , 1994, Pattern Recognit..

[12]  Bruce A. Draper,et al.  Knowledge-directed vision: control, learning, and integration , 1996, Proc. IEEE.