Changes in Anterior Chamber Configuration after Cataract Surgery as Measured by Anterior Segment Optical Coherence Tomography

Purpose To evaluate the changes in anterior chamber depth (ACD) and angle width induced by phacoemulsification and intraocular lens (IOL) implantation in normal eyes using anterior segment optical coherence tomography (AS-OCT). Methods Forty-five eyes (45 patients) underwent AS-OCT imaging to evaluate anterior chamber configuration before and 2 days after phacoemulsification and IOL implantation. We analyzed the central ACD and angle width using different methods: anterior chamber angle (ACA), trabecular-iris angle (TIA), angle opening distance (AOD), and trabecular iris surface area (TISA) in the nasal and temporal quadrants. Comparison between preoperative and postoperative measurement was done using paired t-tests and each of the angle parameters was analyzed with Pearson correlation testing. Subgroup analyses according to the IOL and axial length were performed with a general multivariate linear model adjusted for age. Results Before surgery, the mean anterior chamber angle widths were 23.21 ± 6.70° in the nasal quadrant and 24.89 ± 7.66° in the temporal quadrant. The mean central ACD was 2.75 ± 0.43 mm. After phacoemulsification and IOL implantation, the anterior chamber angle width increased significantly to 35.16 ± 4.65° in the nasal quadrant (p = 0.001) and 36.03 ± 4.86° in the temporal quadrant (p = 0.001). Also, central ACD increased to 4.14 ± 0.31 mm (p = 0.001). AOD, TISA, and TIA increased significantly after cataract surgery and showed positive correlation with ACA. Conclusions After cataract surgery, the ACD and angle width significantly increased in eyes with cataract. AS-OCT is a good method for obtaining quantitative data regarding anterior chamber configuration.

[1]  W. Nolan,et al.  Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography , 2008, Current opinion in ophthalmology.

[2]  K. Sasaki,et al.  Quantitative chamber angle measurement utilizing image-processing techniques. , 1990, Ophthalmic research.

[3]  Samin Hong,et al.  Anterior Chamber Measurements by Pentacam and AS-OCT in Eyes With Normal Open Angles , 2008, Korean journal of ophthalmology : KJO.

[4]  D. Friedman,et al.  Changes in Angle Configuration After Phacoemulsification Measured by Anterior Segment Optical Coherence Tomography , 2008, Journal of glaucoma.

[5]  S. Cronemberger,et al.  Ultrasound biomicroscopic study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation. , 2003, Ophthalmology.

[6]  Tanuj Dada,et al.  Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment , 2007, Journal of cataract and refractive surgery.

[7]  J. Dawczynski,et al.  Anterior Segment Optical Coherence Tomography for Evaluation of Changes in Anterior Chamber Angle and Depth after Intraocular Lens Implantation in Eyes with Glaucoma , 2007, European journal of ophthalmology.

[8]  I. Ahmed,et al.  Anterior Segment Optical Coherence Tomography , 2006 .

[9]  B. Lorenz,et al.  Ocular Phenotype in 3 Young Siblings With a Homozygous KCNV2-Mutation Followed for 14 Years , 2007 .

[10]  J. Alió,et al.  Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. , 2000, Journal of refractive surgery.

[11]  Gabor Nemeth,et al.  Assessment and reproducibility of anterior chamber depth measurement with anterior segment optical coherence tomography compared with immersion ultrasonography , 2007, Journal of cataract and refractive surgery.

[12]  F. Foster,et al.  Plateau iris syndrome: changes in angle opening associated with dark, light, and pilocarpine administration. , 1999, American journal of ophthalmology.

[13]  D. Lam,et al.  Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[14]  Tin Aung,et al.  Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[15]  H. Hayashi,et al.  Changes in anterior chamber angle width and depth after intraocular lens implantation in eyes with glaucoma. , 2000, Ophthalmology.

[16]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[17]  Robert Ritch,et al.  Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. , 2007, Investigative ophthalmology & visual science.

[18]  A. Lam,et al.  Intra‐observer and inter‐observer repeatability of Anterior Eye Segment analysis system (EAS‐1000) in anterior chamber configuration , 2002, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[19]  K. Jin,et al.  Changes of Anterior Chamber Depth and Angle After Cataract Surgery Measured by Anterior Segment OCT , 2008 .

[20]  Joseph A Izatt,et al.  Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. , 2005, Archives of ophthalmology.

[21]  R. Ritch,et al.  Ultrasound biomicroscopy in plateau iris syndrome. , 1992, American journal of ophthalmology.

[22]  Y. Kurimoto,et al.  Angle widening and alteration of ciliary process configuration after cataract surgery for primary angle closure. , 2006, Ophthalmology.

[23]  David Huang,et al.  Optical coherence tomography assessment of angle anatomy changes after cataract surgery. , 2007, American journal of ophthalmology.

[24]  D. Richards,et al.  A method for improved biometry of the anterior chamber with a Scheimpflug technique. , 1988, Investigative ophthalmology & visual science.

[25]  G. Dahmen,et al.  Anterior chamber angle measurement with optical coherence tomography: Intraobserver and interobserver variability , 2006, Journal of cataract and refractive surgery.

[26]  David Huang,et al.  Optical coherence tomography imaging of the anterior chamber angle. , 2005, Ophthalmology clinics of North America.

[27]  C. Cheung,et al.  Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography , 2007, British Journal of Ophthalmology.

[28]  T. Böker,et al.  Anterior chamber angle biometry: a comparison of Scheimpflug photography and ultrasound biomicroscopy. , 1995, Ophthalmic research.

[29]  D. Williams Lens morphometry determined by B-mode ultrasonography of the normal and cataractous canine lens. , 2004, Veterinary ophthalmology.

[30]  G. van der Heijde,et al.  The Thickness of the Aging Human Lens Obtained from Corrected Scheimpflug Images , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[31]  C. Leung,et al.  Visualization of anterior chamber angle dynamics using optical coherence tomography. , 2005, Ophthalmology.

[32]  F. Foster,et al.  Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. , 1992, American journal of ophthalmology.

[33]  Y. Kitazawa,et al.  Appositional angle closure in eyes with narrow angles: an ultrasound biomicroscopic study. , 1997, Journal of glaucoma.

[34]  F. Foster,et al.  Subsurface ultrasound microscopic imaging of the intact eye. , 1990, Ophthalmology.

[35]  N. Yenerel,et al.  Anterior segment optical coherence tomography measurement of anterior chamber depth and angle changes after phacoemulsification and intraocular lens implantation , 2008, Journal of cataract and refractive surgery.