Mössbauer study of LaFeAsO and F-doped superconductors in external magnetic fields

The iron-based F-doped superconductors LaFeAsO1?xFx with a transition temperature of 24 K (for x = 0.07) and 26 K (x = 0.11) and its parent material LaFeAsO were studied using 57Fe M?ssbauer spectroscopy. Further investigation was carried out by applying external magnetic fields. F-doped superconductors showed a singlet pattern with no magnetic splitting throughout the temperature range from 4.2 to 298 K. On the other hand, magnetically-split spectra were observed in the parent LaFeAsO below the N?el temperature of about 140 K. The internal magnetic field reached 5.3 T at 4.2 K. The external magnetic fields up to 14 T were applied to the singlet phases, F-doped superconductors and the parent LaFeAsO above the N?el temperature. The induced magnetically-split spectra showed the internal magnetic fields with the comparable value to the applied fields. This fact confirmed that these singlet phases have the paramagnetic feature. The magnetic fields were also applied to the magnetically-ordered phase of LaFeAsO below the N?el temperature. The evolution of the spectra depending on the external magnetic fields was clearly explained by a model with two sublattice spins of the powdered antiferromagnet. This fact confirmed the magnetically-ordered phase is an antiferromagnet. The spin-flop field was also estimated by the model as about 26 T.