Impact of Si surface roughness on MOSFET characteristics with ultrathin HfON gate insulator formed by ECR plasma sputtering

[1]  T. Ohmi,et al.  Dependence of electron channel mobility on Si-SiO/sub 2/ interface microroughness , 1991, IEEE Electron Device Letters.

[2]  J. Jopling,et al.  High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  R. Kuroda,et al.  Revolutional Progress of Silicon Technologies Exhibiting Very High Speed Performance Over a 50-GHz Clock Rate , 2007, IEEE Transactions on Electron Devices.

[4]  Shun'ichiro Ohmi,et al.  Flattening Process of Si Surface below 1000°C Utilizing Ar/4.9%H2 Annealing and Its Effect on Ultrathin HfON Gate Insulator Formation , 2013, IEICE Trans. Electron..

[5]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[6]  R. Kuroda,et al.  Atomically Flat Silicon Surface and Silicon/Insulator Interface Formation Technologies for (100) Surface Orientation Large-Diameter Wafers Introducing High Performance and Low-Noise Metal–Insulator–Silicon FETs , 2009, IEEE Transactions on Electron Devices.

[7]  Tadahiro Ohmi,et al.  The data analysis technique of the atomic force microscopy for the atomically flat silicon surface(Session9A: Silicon Devices IV) , 2008, SDM 2008.

[8]  Takahiro Sano,et al.  HfOxNy Thin-Film Formation on Three-Dimensional Si Structure Utilizing Electron Cyclotron Resonance Sputtering , 2009 .

[9]  Tadahiro Ohmi,et al.  Impact of Channel Direction Dependent Low Field Hole Mobility on (100) Orientation Silicon Surface , 2011 .

[10]  Tetsuo Fukuda,et al.  The Analysis of Bending Stress and Mechanical Property of Ultralarge Diameter Silicon Wafers at High Temperatures , 1996 .

[11]  Yasuyuki Miyamoto,et al.  InP/InGaAs Composite Metal–Oxide–Semiconductor Field-Effect Transistors with Regrown Source and Al2O3 Gate Dielectric Exhibiting Maximum Drain Current Exceeding 1.3 mA/µm , 2011 .

[12]  Hiroshi Shirai,et al.  Surface modification of silicon (111) by annealing at high temperature in hydrogen , 1996 .

[13]  Yoshihiko Saito,et al.  Periodic Step and Terrace Formation on Si(100) Surface during Si Epitaxial Growth by Atmospheric Chemical Vapor Deposition , 1992 .

[14]  Shun'ichiro Ohmi,et al.  Hafnium-nitride gate insulator formed by electron-cyclotron-resonance plasma sputtering , 2012, IEICE Electron. Express.

[15]  Shun-ichiro Ohmi,et al.  Potential of MISFET with HfN gate dielectric formed by ECR plasma sputtering , 2013 .

[16]  Dae-Hee Han,et al.  Effect of silicon surface roughness on MOSFET performance with ultra-thin HfON gate insulator formed by ECR sputtering (シリコン材料・デバイス) , 2012, SDM 2012.

[17]  S. Saito,et al.  Analytical quantum mechanical model for accumulation capacitance of MOS structures , 2002, IEEE Electron Device Letters.

[18]  T. Iizuka,et al.  Advanced electron mobility model of MOS inversion layer considering 2D-degenerate electron gas physics , 1990, International Technical Digest on Electron Devices.

[19]  C. R. Helms,et al.  Correlation between inversion layer mobility and surface roughness measured by AFM , 1996, IEEE Electron Device Letters.

[20]  Tadahiro Ohmi,et al.  Atomically Flattening Technology at 850ºC for Si(100) Surface , 2019, ECS Transactions.

[21]  Yoshiaki Matsushita,et al.  Precise Control of Annealed Wafer For Nanometer Devices , 2006 .