PTEN regulates cilia through Dishevelled

[1]  B. Blencowe,et al.  Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming , 2015, Genes & development.

[2]  M. Montcouquiol,et al.  A dual role for planar cell polarity genes in ciliated cells , 2014, Proceedings of the National Academy of Sciences.

[3]  Sudipto Roy,et al.  Switching on cilia: transcriptional networks regulating ciliogenesis , 2014, Development.

[4]  G. Merlo,et al.  PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function , 2014, Developmental cell.

[5]  C. Eng,et al.  Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly , 2013, European Journal of Human Genetics.

[6]  W. Marshall,et al.  Ciliary Regulation: Disassembly Takes the Spotlight , 2013, Current Biology.

[7]  O. Blacque,et al.  Striated Rootlet and Nonfilamentous Forms of Rootletin Maintain Ciliary Function , 2013, Current Biology.

[8]  B. Eickholt,et al.  Phosphorylation of the Actin Binding Protein Drebrin at S647 Is Regulated by Neuronal Activity and PTEN , 2013, PloS one.

[9]  J. Wrana,et al.  Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration , 2012, Cell.

[10]  M. Zhou,et al.  Identification of a novel Wnt5a–CK1ε–Dvl2–Plk1‐mediated primary cilia disassembly pathway , 2012, The EMBO journal.

[11]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[12]  R. Wilmott Central role of cilia in a spectrum of pediatric disorders , 2012 .

[13]  T. Ferkol,et al.  Ciliopathies: the central role of cilia in a spectrum of pediatric disorders , 2012 .

[14]  G. Barton,et al.  PTEN Protein Phosphatase Activity Correlates with Control of Gene Expression and Invasion, a Tumor-Suppressing Phenotype, But Not with AKT Activity , 2012, Science Signaling.

[15]  W. Marshall,et al.  Stages of ciliogenesis and regulation of ciliary length. , 2012, Differentiation; research in biological diversity.

[16]  Víctor J Cid,et al.  A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. , 2011, Human molecular genetics.

[17]  J. Gleeson,et al.  Modeling Human Disease in Humans: The Ciliopathies , 2011, Cell.

[18]  A. Louvi,et al.  Cilia in the CNS: The Quiet Organelle Claims Center Stage , 2011, Neuron.

[19]  J. Wallingford Planar cell polarity signaling, cilia and polarized ciliary beating. , 2010, Current opinion in cell biology.

[20]  H. Okano,et al.  Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II , 2010, Development.

[21]  T. Uemura,et al.  Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus , 2010, Nature Neuroscience.

[22]  Ye Guang Chen,et al.  Dishevelled: The hub of Wnt signaling. , 2010, Cellular signalling.

[23]  K. Sawamoto,et al.  Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia , 2010, Nature Cell Biology.

[24]  Jose Manuel García-Verdugo,et al.  Cilia Organize Ependymal Planar Polarity , 2010, The Journal of Neuroscience.

[25]  C. Holt,et al.  E3 Ligase Nedd4 Promotes Axon Branching by Downregulating PTEN , 2010, Neuron.

[26]  Cornelis J. Weijer,et al.  Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN , 2009, Oncogene.

[27]  C. Eng,et al.  PTEN hamartoma tumor syndrome: An overview , 2009, Genetics in Medicine.

[28]  S. Schiffmann,et al.  INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse , 2009, Nature Genetics.

[29]  J. Wrana,et al.  Regulation of Planar Cell Polarity by Smurf Ubiquitin Ligases , 2009, Cell.

[30]  F. Vazquez,et al.  A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN , 2009, Proceedings of the National Academy of Sciences.

[31]  A. Ohtoshi Cerebrospinal Fluid Research BioMed Central Review Multiplicity of cerebrospinal fluid functions: New challenges in health and disease , 2008 .

[32]  Tae Joo Park,et al.  Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells , 2008, Nature Genetics.

[33]  Peter Satir,et al.  Structure and function of mammalian cilia , 2008, Histochemistry and Cell Biology.

[34]  B. Yoder,et al.  Ciliary dysfunction in developmental abnormalities and diseases. , 2008, Current topics in developmental biology.

[35]  Erica A. Golemis,et al.  HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium , 2007, Cell.

[36]  S. Chien,et al.  A positive feedback mechanism governs the polarity and motion of motile cilia , 2007, Nature.

[37]  B. Hogan,et al.  Lung development and repair: Contribution of the ciliated lineage , 2007, Proceedings of the National Academy of Sciences.

[38]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[39]  E. Lam,et al.  A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). , 2006, ACS chemical biology.

[40]  S. Ueno,et al.  PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. , 2006, Developmental biology.

[41]  Wallace F. Marshall,et al.  Cilia: Tuning in to the Cell's Antenna , 2006, Current Biology.

[42]  L. Davidson,et al.  Radial intercalation of ciliated cells during Xenopus skin development , 2006, Development.

[43]  M. Sanderson,et al.  The Ciliary Rootlet Maintains Long-Term Stability of Sensory Cilia , 2005, Molecular and Cellular Biology.

[44]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[45]  J. García-Verdugo,et al.  Adult Ependymal Cells Are Postmitotic and Are Derived from Radial Glial Cells during Embryogenesis , 2005, The Journal of Neuroscience.

[46]  L. Mahimainathan,et al.  Inactivation of Platelet-derived Growth Factor Receptor by the Tumor Suppressor PTEN Provides a Novel Mechanism of Action of the Phosphatase* , 2004, Journal of Biological Chemistry.

[47]  M. Groszer,et al.  Cre/loxP‐mediated inactivation of the murine Pten tumor suppressor gene , 2002, Genesis.

[48]  J. Wallingford,et al.  Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. , 2001, Development.

[49]  Martin Egli,et al.  Crystal Structure of a Conformation-selective Casein Kinase-1 Inhibitor* , 2000, The Journal of Biological Chemistry.

[50]  D. Wettstein,et al.  A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. , 1999, Development.

[51]  Kenneth M. Yamada,et al.  PTEN Interactions with Focal Adhesion Kinase and Suppression of the Extracellular Matrix-dependent Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway* , 1999, The Journal of Biological Chemistry.

[52]  M. Wigler,et al.  The lipid phosphatase activity of PTEN is critical for its tumor supressor function. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  T. Mak,et al.  High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice , 1998, Current Biology.

[54]  José Luis de la Pompa,et al.  Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN , 1998, Cell.

[55]  Carlos Cordon-Cardo,et al.  Pten is essential for embryonic development and tumour suppression , 1998, Nature Genetics.

[56]  Tomohiko Maehama,et al.  The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3,4,5-Trisphosphate* , 1998, The Journal of Biological Chemistry.

[57]  M. Wigler,et al.  P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Sokol Analysis of Dishevelled signalling pathways during Xenopus development , 1996, Current Biology.

[59]  K Y Hui,et al.  A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). , 1994, The Journal of biological chemistry.

[60]  H. Fujita,et al.  Fine structural aspects of the development and aging of the tracheal epithelium of mice. , 1983, Archivum histologicum Japonicum = Nihon soshikigaku kiroku.