Geochemical constraints on CO2-rich mantle source for the Kocebu Seamount, Magellan Seamount chain in the western Pacific

[1]  Tiegang Li,et al.  Revisiting the dependence of thermocline-dwelling foraminiferal B/Ca on temperature and [CO32−], and its application in reconstruction of the subsurface carbonate system in the tropical western Pacific since 24 ka , 2019, Acta Oceanologica Sinica.

[2]  Yonggang Liu,et al.  Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications , 2019, Acta Oceanologica Sinica.

[3]  A. Hofmann,et al.  Evolution of carbonated melt to alkali basalt in the South China Sea , 2017 .

[4]  C. Smith-Duque,et al.  Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific , 2014 .

[5]  Z. Zeng,et al.  Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge , 2013, Acta Oceanologica Sinica.

[6]  J. Hermann,et al.  An Experimental Study of Carbonated Eclogite at 3·5–5·5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle , 2012 .

[7]  Li Xuehui GENESIS AND ORE-FORMING STAGES OF CO-RICH FERROMANGANESE CRUSTS FROM SEAMOUNT M OF MAGELLAN SEAMOUNTS:EVIDENCE FROM GEOCHEMISTRY AND CO CHRONOLOGY , 2011 .

[8]  R. Dasgupta,et al.  Carbonate-fluxed Melting of MORB-like Pyroxenite at 2·9 GPa and Genesis of HIMU Ocean Island Basalts , 2010 .

[9]  Chu Feng-you The research on the drifting history and possible origin of the Magellan seamount trail , 2010 .

[10]  B. Moine,et al.  Trace element partitioning during partial melting of carbonated eclogites , 2009 .

[11]  Zhao Hong-qiao Fractal Research on Seamount Topography in the West Pacific Ocean , 2009 .

[12]  Gao Hong-yu Determination and Implication for Paleoceanography Study of Fluorine of Iron-Manganese Crusts from the Magellan Seamounts , 2009 .

[13]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[14]  L. Ding,et al.  The noble gas contents and helium and argon isotopic compositions in the cobalt-rich crusts from the Magellan Seamounts , 2008 .

[15]  M. Hirschmann,et al.  Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts , 2007 .

[16]  Xuefa Shi,et al.  He, Ne and Ar isotopic composition of Fe-Mn crusts from the western and central Pacific Ocean and implications for their genesis , 2007 .

[17]  M. Hirschmann,et al.  Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges , 2007 .

[18]  P. Jia Modes of occurrence and characteristics of phosphorates on Pacific Guyots and their genetic significance , 2007 .

[19]  M. Hirschmann,et al.  Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-undersaturated Ocean Island Lavas , 2006 .

[20]  Wang Shengwei,et al.  Noble gases isotopic compositions and sources of cobalt-rich crusts from west Pacific Ocean seamounts , 2006 .

[21]  H. Staudigel,et al.  Short‐lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? , 2003 .

[22]  E. Neumann,et al.  Mantle Xenoliths from Tenerife (Canary Islands): Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts inducing Ca Metasomatism , 2002 .

[23]  D. Garbe‐Schönberg,et al.  Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate , 2002 .

[24]  Liu Xue-qing Research on Geochemical Characteristics of Major, Trace and Rare-Earth Elements in Phosphates from the West Pacific Seamounts , 2002 .

[25]  Zhu Ke-chao PETROLOGY OF THE SUBSTRATE IN SEAMOUNTS MA, MC, MD, ME AND MF FROM MAGELLAN SEAMOUNTS , 2002 .

[26]  T. Ntaflos,et al.  Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil , 2001 .

[27]  F. Siena,et al.  Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean , 1999 .

[28]  H. Staudigel,et al.  The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. , 1998 .

[29]  K. Bell,et al.  Magmatic Evolution of the Melilitite- Carbonatite-Nephelinite Dyke Series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia) , 1998 .

[30]  W. Lee Petrogenesis of Carbonatite Magmas from Mantle to Crust, Constrained by the System CaO-(MgO + FeO*)-(Na , 1998 .

[31]  K. Hirose Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali‐basalt magma generation , 1997 .

[32]  Holloway,et al.  Melting Temperature and Partial Melt Chemistry of H2O-Saturated Mantle Peridotite to 11 Gigapascals , 1997, Science.

[33]  J. Holloway Melting Temperature and Partial Melt Chemistry of H 2 O-Saturated Mantle Peridotite to 11 Gigapascals Tatsuhiko Kawamoto , 1997 .

[34]  B. Harte,et al.  Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for wet melting of the lithospheric mantle , 1996 .

[35]  D. Günther,et al.  Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions , 1995 .

[36]  W. McDonough,et al.  The composition of the Earth , 1995 .

[37]  S. Hart,et al.  Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle , 1993, Nature.

[38]  K. Hirose,et al.  Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond , 1993 .

[39]  W. McDonough,et al.  Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics , 1993 .

[40]  L. Beccaluva,et al.  Fractional Crystallization and Liquid Immiscibility Processes in the Alkaline-Carbonatite Complex of Juquiá (São Paulo, Brazil) , 1992 .

[41]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[42]  Walter H. F. Smith,et al.  The Magellan seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly , 1989 .

[43]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[44]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[45]  D. Green,et al.  Mantle metasomatism by ephemeral carbonatite melts , 1988 .

[46]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[47]  R. Maitre A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram , 1984 .

[48]  S. H. Richardson,et al.  Alteration of the oceanic crust: Processes and timing , 1981 .

[49]  R. Hart A Model for Chemical Exchange in the Basalt-Seawater System of Oceanic Layer II , 1973 .

[50]  B. Mason Composition of the Earth , 1966, Nature.