Quantum algorithm and circuit design solving the Poisson equation

The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error ε. We assume we are given a superposition of function evaluations of the right-hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in ε−1. We present quantum circuit modules together with performance guarantees which can also be used for other problems.

[1]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[2]  F. Nori,et al.  Quantum algorithm for obtaining the energy spectrum of a physical system , 2011, 1108.5902.

[3]  A. Papageorgiou,et al.  On the efficiency of quantum algorithms for Hamiltonian simulation , 2011, Quantum Information Processing.

[4]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[5]  T. Osborne Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.

[6]  R. Dreizler,et al.  Density Functional Theory: An Advanced Course , 2011 .

[7]  I. Chuang,et al.  Quantum computation and quantum information , 2020 .

[8]  Dominic W. Berry,et al.  High-order quantum algorithm for solving linear differential equations , 2010, ArXiv.

[9]  Chi Zhang,et al.  A fast algorithm for approximating the ground state energy on a quantum computer , 2010, Math. Comput..

[10]  Chi Zhang,et al.  On the efficiency of quantum algorithms for Hamiltonian simulation , 2010, Quantum Information Processing.

[11]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[12]  Tobias J. Osborne,et al.  A quantum algorithm to solve nonlinear differential equations , 2008, 0812.4423.

[13]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[14]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[15]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[16]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[17]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[18]  Jonathan P. Dowling,et al.  Quantum information: To compute or not to compute? , 2006, Nature.

[19]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[20]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[21]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[22]  Andrei N. Soklakov,et al.  Efficient state preparation for a register of quantum bits , 2004, quant-ph/0408045.

[23]  S. Jordan Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[26]  A. Klappenecker,et al.  Discrete cosine transforms on quantum computers , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[27]  T. Beth,et al.  Polynomial-Time Solution to the Hidden Subgroup Problem for a Class of non-abelian Groups , 1998, quant-ph/9812070.

[28]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[29]  Markus Püschel,et al.  Fast Quantum Fourier Transforms for a Class of Non-Abelian Groups , 1998, AAECC.

[30]  Daniel A. Lidar,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[31]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[32]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[33]  Fabio Di Benedetto,et al.  Preconditioning of Block Toeplitz Matrices by Sine Transforms , 1997, SIAM J. Sci. Comput..

[34]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[35]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[37]  M. Bergren,et al.  To compute or not to compute. , 1993, The Journal of school nursing : the official publication of the National Association of School Nurses.

[38]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[39]  Arthur G. Werschulz,et al.  Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.

[40]  Henryk Wozniakowski,et al.  On the Optimal Solution of Large Linear Systems , 1984, JACM.

[41]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[42]  B. E. Hubbard,et al.  On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation , 1962 .

[43]  W. Wasow,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[44]  E. Engel,et al.  Density Functional Theory , 2011 .

[45]  P. Glynn,et al.  Markov Chains and Stochastic Stability: Heuristics , 2009 .

[46]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[47]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[48]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[49]  Grzegorz W. WasilkowskiAbstract On the Average Case Complexity of Solving Poisson Equations , 1996 .

[50]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[51]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[52]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[53]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.