Review of photovoltaic power forecasting

[1]  T. Hoff,et al.  Solar Resource Variability , 2018 .

[2]  Francesco Grimaccia,et al.  Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power , 2017, Math. Comput. Simul..

[3]  Ping-Feng Pai,et al.  Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression , 2016 .

[4]  L. D. Monache,et al.  An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting , 2016 .

[5]  Irena Koprinska,et al.  Univariate and multivariate methods for very short-term solar photovoltaic power forecasting , 2016 .

[6]  M. G. De Giorgi,et al.  Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine , 2016 .

[7]  Jing Huang,et al.  A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting , 2016 .

[8]  G. Nagy,et al.  GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach , 2016 .

[9]  Rob J Hyndman,et al.  Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond , 2016 .

[10]  M. Do,et al.  A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: Application to solar and photovoltaic prediction , 2016 .

[11]  Carlos F.M. Coimbra,et al.  Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest , 2016 .

[12]  B. Hodge,et al.  The value of day-ahead solar power forecasting improvement , 2016 .

[13]  Giorgio Graditi,et al.  Comparison of Photovoltaic plant power production prediction methods using a large measured dataset , 2016 .

[14]  J. A. Ruiz-Arias,et al.  Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance , 2016 .

[15]  F. J. Martinez-de-Pison,et al.  Impact of atmospheric components on solar clear-sky models at different elevation: Case study Canary Islands , 2016 .

[16]  H. Pedro,et al.  Benefits of solar forecasting for energy imbalance markets , 2016 .

[17]  Bing Dong,et al.  A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting , 2016 .

[18]  M. Alia-Martinez,et al.  Smart baseline models for solar irradiation forecasting , 2016 .

[19]  Pierre Pinson,et al.  Very Short-Term Nonparametric Probabilistic Forecasting of Renewable Energy Generation— With Application to Solar Energy , 2016, IEEE Transactions on Power Systems.

[20]  Boudewijn Elsinga,et al.  An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands , 2016 .

[21]  M. Do,et al.  A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones , 2016 .

[22]  Zeyar Aung,et al.  Probabilistic Forecasting of Solar Power: An Ensemble Learning Approach , 2017, KES-IDT.

[23]  Zechun Hu,et al.  Photovoltaic and solar power forecasting for smart grid energy management , 2015 .

[24]  Bri-Mathias Hodge,et al.  Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting , 2015 .

[25]  Irena Koprinska,et al.  2D-interval forecasts for solar power production , 2015 .

[26]  Vladimiro Miranda,et al.  Probabilistic solar power forecasting in smart grids using distributed information , 2015 .

[27]  L. D. Monache,et al.  An analog ensemble for short-term probabilistic solar power forecast , 2015 .

[28]  Sue Ellen Haupt,et al.  Solar Forecasting: Methods, Challenges, and Performance , 2015, IEEE Power and Energy Magazine.

[29]  Ponnuthurai Nagaratnam Suganthan,et al.  Ensemble methods for wind and solar power forecasting—A state-of-the-art review , 2015 .

[30]  T. Takashima,et al.  Regional forecasts of photovoltaic power generation according to different data availability scenarios: a study of four methods , 2015 .

[31]  A. Dolara,et al.  Comparison of different physical models for PV power output prediction , 2015 .

[32]  Dong Huang,et al.  3D cloud detection and tracking system for solar forecast using multiple sky imagers , 2015 .

[33]  R. Verzijlbergh,et al.  Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications , 2015 .

[34]  Maria Grazia De Giorgi,et al.  Error analysis of hybrid photovoltaic power forecasting models: A case study of mediterranean climate , 2015 .

[35]  Tomonobu Senjyu,et al.  A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals , 2015, 2015 IEEE Power & Energy Society General Meeting.

[36]  Jie Zhang,et al.  Machine learning based multi-physical-model blending for enhancing renewable energy forecast - improvement via situation dependent error correction , 2015, 2015 European Control Conference (ECC).

[37]  Martin Schmelas,et al.  Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System , 2015 .

[38]  Vishwamitra Oree,et al.  A hybrid method for forecasting the energy output of photovoltaic systems , 2015 .

[39]  Joao Gari da Silva Fonseca Junior,et al.  On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation , 2015 .

[40]  Serge J. Belongie,et al.  Cloud motion and stability estimation for intra-hour solar forecasting , 2015 .

[41]  O. Perpiñán,et al.  PV power forecast using a nonparametric PV model , 2015 .

[42]  Francesco Grimaccia,et al.  A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output , 2015 .

[43]  J. Kleissl,et al.  Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant , 2015 .

[44]  Carlos F.M. Coimbra,et al.  Short-term reforecasting of power output from a 48 MWe solar PV plant , 2015 .

[45]  Bri-Mathias Hodge,et al.  A suite of metrics for assessing the performance of solar power forecasting , 2015 .

[46]  Lalit Mohan Saini,et al.  Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013–14 Solar Energy Prediction Contest , 2014 .

[47]  A. Hammer,et al.  PV Power Predictions on Different Spatial and Temporal Scales Integrating PV Measurements, Satellite Data and Numerical Weather Predictions , 2014 .

[48]  Matteo De Felice,et al.  Short-Term Predictability of Photovoltaic Production over Italy , 2014, ArXiv.

[49]  Eduardo F. Fernández,et al.  A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator , 2014 .

[50]  Joao Gari da Silva Fonseca Junior,et al.  Regional forecasts and smoothing effect of photovoltaic power generation in Japan: An approach with principal component analysis , 2014 .

[51]  Yan Su,et al.  Analysis of daily solar power prediction with data-driven approaches , 2014 .

[52]  E. Caamaño-Martín,et al.  Improving photovoltaics grid integration through short time forecasting and self-consumption , 2014 .

[53]  Francesco Grimaccia,et al.  Hybrid model analysis and validation for PV energy production forecasting , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[54]  M. Russo,et al.  Genetic programming for photovoltaic plant output forecasting , 2014 .

[55]  Adel Mellit,et al.  Short-term forecasting of power production in a large-scale photovoltaic plant , 2014 .

[56]  Olivier Pannekoucke,et al.  A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production , 2014 .

[57]  Hasimah Abdul Rahman,et al.  A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation , 2014 .

[58]  Alex Cronin,et al.  The economic value of forecasts for optimal curtailment strategies to comply with ramp rate rules , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[59]  Yan Su,et al.  An ARMAX model for forecasting the power output of a grid connected photovoltaic system , 2014 .

[60]  Maria Grazia De Giorgi,et al.  Photovoltaic power forecasting using statistical methods: impact of weather data , 2014 .

[61]  J. Kleissl,et al.  Development of a sky imaging system for short-term solar power forecasting , 2014 .

[62]  Chao-Ming Huang,et al.  A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output , 2014, IEEE Transactions on Sustainable Energy.

[63]  E. Arias-Castro,et al.  A Poisson model for anisotropic solar ramp rate correlations , 2014 .

[64]  L. Bird,et al.  Wind and Solar Energy Curtailment: Experience and Practices in the United States , 2014 .

[65]  Joao Gari da Silva Fonseca Junior,et al.  Characterizing the Regional Photovoltaic Power Forecast Error in Japan: A Study of 5 Regions , 2014 .

[66]  Joao Gari da Silva Fonseca Junior,et al.  Forecasting Regional Photovoltaic Power Generation - A Comparison of Strategies to Obtain One-Day-Ahead Data , 2014 .

[67]  A. Massi Pavan,et al.  A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant , 2013 .

[68]  R. Inman,et al.  Solar forecasting methods for renewable energy integration , 2013 .

[69]  Ignacio J. Ramirez-Rosado,et al.  Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques , 2013 .

[70]  A. Cronin,et al.  Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors , 2013 .

[71]  J. Kleissl,et al.  Reporting of irradiance modeling relative prediction errors , 2013 .

[72]  M. Diagne,et al.  Review of solar irradiance forecasting methods and a proposition for small-scale insular grids , 2013 .

[73]  Hiroyuki Mori,et al.  A Hybrid Intelligent System Approach to Forecasting of PV Generation Output , 2013 .

[74]  J. Kleissl,et al.  Cloud motion vectors from a network of ground sensors in a solar power plant , 2013 .

[75]  Paras Mandal,et al.  Solar PV power generation forecast using a hybrid intelligent approach , 2013, 2013 IEEE Power & Energy Society General Meeting.

[76]  V. Badescu,et al.  Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania , 2013 .

[77]  A. Hellal,et al.  Power Forecasting of Photovoltaic Generation , 2013 .

[78]  Ignacio J. Ramirez-Rosado,et al.  Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity , 2013 .

[79]  S. Pelland,et al.  Solar and photovoltaic forecasting through post‐processing of the Global Environmental Multiscale numerical weather prediction model , 2013 .

[80]  Bri-Mathias Hodge,et al.  Identifying Wind and Solar Ramping Events , 2013, 2013 IEEE Green Technologies Conference (GreenTech).

[81]  Francesco Grimaccia,et al.  Hybrid Predictive Models for Accurate Forecasting in PV Systems , 2013 .

[82]  Wei Qiao,et al.  Short-term solar power prediction using a support vector machine , 2013 .

[83]  S. Jafarzadeh,et al.  Solar Power Prediction Using Interval Type-2 TSK Modeling , 2013, IEEE Transactions on Sustainable Energy.

[84]  Chul-Hwan Kim,et al.  Determination Method of Insolation Prediction With Fuzzy and Applying Neural Network for Long-Term Ahead PV Power Output Correction , 2013, IEEE Transactions on Sustainable Energy.

[85]  Guido Carpinelli,et al.  A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control , 2013 .

[86]  C. Coimbra,et al.  Proposed Metric for Evaluation of Solar Forecasting Models , 2013 .

[87]  J. Kleissl,et al.  Chapter 9 – Sky-Imaging Systems for Short-Term Forecasting , 2013 .

[88]  E. Lorenz,et al.  Chapter 11 – Satellite-Based Irradiance and Power Forecasting for the German Energy Market , 2013 .

[89]  J. Kleissl,et al.  Case Studies of Solar Forecasting with the Weather Research and Forecasting Model at GL-Garrad Hassan , 2013 .

[90]  V. Larson Chapter 12 – Forecasting Solar Irradiance with Numerical Weather Prediction Models , 2013 .

[91]  Carlos F.M. Coimbra,et al.  Chapter 15 – Stochastic-Learning Methods , 2013 .

[92]  Y. Wang,et al.  Offset-Free Predictive Control for Variable Speed Wind Turbines , 2013, IEEE Transactions on Sustainable Energy.

[93]  Eric Wai Ming Lee,et al.  Short-term prediction of photovoltaic energy generation by intelligent approach , 2012 .

[94]  A. M. T. Oo,et al.  Hybrid prediction method of solar power using different computational intelligence algorithms , 2012, 2012 22nd Australasian Universities Power Engineering Conference (AUPEC).

[95]  T. Takashima,et al.  Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan , 2012 .

[96]  E. Lorenz,et al.  Local and regional photovoltaic power prediction for large scale grid integration: Assessment of a new algorithm for snow detection , 2012 .

[97]  Marco Russo Towards General Purpose Neuro-Genetic Programming Socket Based Formal Modeller - (Invited Paper) , 2012, ICHIT.

[98]  Montserrat Mendoza-Villena,et al.  Short-term power forecasting system for photovoltaic plants , 2012 .

[99]  H. Pedro,et al.  Assessment of forecasting techniques for solar power production with no exogenous inputs , 2012 .

[100]  D. Jacobs Renewable Energy Policy Convergence in the EU: The Evolution of Feed-in Tariffs in Germany, Spain and France , 2012 .

[101]  Yun Li,et al.  Forecasting of photovoltaic power yield using dynamic neural networks , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[102]  J. S. Stein,et al.  The photovoltaic Performance Modeling Collaborative (PVPMC) , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[103]  Vladimiro Miranda,et al.  Wind Power Trading Under Uncertainty in LMP Markets , 2012, IEEE Transactions on Power Systems.

[104]  Peng Wang,et al.  Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines , 2011, IEEE Transactions on Industry Applications.

[105]  Francesco Grimaccia,et al.  Artificial Intelligence Forecast of PV Plant Production for Integration in Smart Energy Systems , 2012 .

[106]  Paras Mandal,et al.  Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques , 2012, Complex Adaptive Systems.

[107]  Llanos Mora-López,et al.  Machine Learning Approach for Next Day Energy Production Forecasting in Grid Connected Photovoltaic Plants , 2011 .

[108]  Bangyin Liu,et al.  Online 24-h solar power forecasting based on weather type classification using artificial neural network , 2011 .

[109]  Detlev Heinemann,et al.  Regional PV power prediction for improved grid integration , 2011 .

[110]  Laurent Dubus,et al.  Analog Method for Collaborative Very-Short-Term Forecasting of Power Generation from Photovoltaic Systems , 2011 .

[111]  Joao Gari da Silva Fonseca,et al.  Photovoltaic power production forecasts with support vector regression: A study on the forecast horizon , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[112]  Lei Wang,et al.  An ANN-based Approach for Forecasting the Power Output of Photovoltaic System , 2011 .

[113]  Boonyang Plangklang,et al.  Forecasting Power output of PV Grid Connected System in Thailand without using Solar Radiation Measurement , 2011 .

[114]  M. Etezadi-Amoli,et al.  Practical approach for sub-hourly and hourly prediction of PV power output , 2010, North American Power Symposium 2010.

[115]  Sarah McCormack,et al.  Validated Real-time Energy Models for Small-Scale Grid-Connected PV-Systems , 2010 .

[116]  A. Mills,et al.  Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power , 2010 .

[117]  Chen Changsong,et al.  Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement , 2010, The 2nd International Symposium on Power Electronics for Distributed Generation Systems.

[118]  A. Mellit,et al.  A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy , 2010 .

[119]  Lin He,et al.  Short-Term Forecast of Power Generation for Grid-Connected Photovoltaic System Based on Advanced Grey-Markov Chain , 2009, 2009 International Conference on Energy and Environment Technology.

[120]  Henrik Madsen,et al.  Online short-term solar power forecasting , 2009 .

[121]  Yousuke Nozaki,et al.  Forecasting electric power generation in a photovoltaic power system for an energy network , 2009 .

[122]  L. Ramírez,et al.  Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations , 2009 .

[123]  H. G. Beyer,et al.  Qualified Forecast of Ensemble Power Production by Spatially Dispersed Grid-Connected PV Systems , 2008 .

[124]  C. Gueymard REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset , 2008 .

[125]  T. Funabashi,et al.  Application of Recurrent Neural Network to Short-Term-Ahead Generating Power Forecasting for Photovoltaic System , 2007, 2007 IEEE Power Engineering Society General Meeting.

[126]  P. Ineichen Comparison of eight clear sky broadband models against 16 independent data banks , 2006 .

[127]  R. Kuhlemann,et al.  Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module , 2004 .

[128]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[129]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[130]  P. Ineichen,et al.  A new airmass independent formulation for the Linke turbidity coefficient , 2002 .

[131]  L. Wald,et al.  On the clear sky model of the ESRA — European Solar Radiation Atlas — with respect to the heliosat method , 2000 .

[132]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .