Minimization problems for eigenvalues of the Laplacian

This paper is a survey on classical results and open questions about minimization problems concerning the lower eigenvalues of the Laplace operator. After recalling classical isoperimetric inequalities for the two first eigenvalues, we present recent advances on this topic. In particular, we study the minimization of the second eigenvalue among plane convex domains. We also discuss the minimization of the third eigenvalue. We prove existence of a minimizer. For others eigenvalues, we just give some conjectures. We also consider the case of Neumann, Robin and Stekloff boundary conditions together with various functions of the eigenvalues.

[1]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  G. Polya,et al.  Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .

[4]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[5]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[6]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[7]  George Polya,et al.  On the characteristic frequencies of a symmetric membrane , 1955 .

[8]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[9]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[10]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[11]  H. Weinberger,et al.  Some isoperimetric inequalities for membrane frequencies and torsional rigidity , 1961 .

[12]  J. Hersch THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES , 1963 .

[13]  Contraintes rectilignes parallèles et valeurs propres de membranes vibrantes , 1966 .

[14]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[15]  J. Hersch,et al.  Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type , 1968 .

[16]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[17]  Elliptical membranes with smallest second eigenvalue , 1973 .

[18]  Menahem Schiffer,et al.  Some inequalities for Stekloff eigenvalues , 1974 .

[19]  R. Osserman The isoperimetric inequality , 1978 .

[20]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[21]  Olli Lehto Proceedings of the International Congress of Mathematicians : Helsinki, 1978 , 1980 .

[22]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[23]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[24]  Marie-Hélène Bossel Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .

[25]  R. Benguria,et al.  Proof of the Payne-Pólya-Weinberger conjecture , 1991 .

[26]  T. Rassias THE ISOPERIMETRIC INEQUALITY AND EIGENVALUES OF THE LAPLACIAN , 1991 .

[27]  Antonios D. Melas On the nodal line of the second eigenfunction of the Laplacian in $\mathbf{R}^2$ , 1992 .

[28]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[29]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[30]  R. Greene,et al.  Differential Geometry: Partial Differential Equations on Manifolds , 1993 .

[31]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[32]  J. Keller,et al.  Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[34]  Giovanni Alessandrini,et al.  Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains , 1994 .

[35]  R. Benguria,et al.  On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions , 1995 .

[36]  Dorin Bucur,et al.  N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .

[37]  Steven J. Cox,et al.  The Generalized Gradient at a Multiple Eigenvalue , 1995 .

[38]  N. Nadirashvili Rayleigh's conjecture on the principal frequency of the clamped plate , 1995 .

[39]  M. Flucher,et al.  Approximation of Dirichlet Eigenvalues on Domains with Small Holes , 1995 .

[40]  S. Cox EXTREMAL EIGENVALUE PROBLEMS FOR STARLIKE PLANAR DOMAINS , 1995 .

[41]  Mark S. Ashbaugh,et al.  Open Problems on Eigenvalues of the Laplacian , 1999 .

[42]  J. Sikora,et al.  Optimal shape design , 1999 .

[43]  Isabel N. Figueiredo,et al.  On the attainable eigenvalues of the Laplace operator , 1999 .

[44]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[45]  Dorin Bucur,et al.  Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Antoine Henrot,et al.  Le stade ne minimise pas λ2 parmi les ouverts convexes du plan , 2001 .

[47]  Evans M. Harrell,et al.  On the Placement of an Obstacle or a Well so as to Optimize the Fundamental Eigenvalue , 2001, SIAM J. Math. Anal..

[48]  Eigenvalue and eigenfunction inequalities for the elastically supported membrane , 2001 .

[49]  Friedemann Brock,et al.  An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .

[50]  Edouard Oudet,et al.  Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .

[51]  On two functionals connected to the Laplacian in a class of doubly connected domains , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.