Light Trapping in Ultrathin Plasmonic Solar Cells References and Links

We report on the design, fabrication, and measurement of ultrathin film a-Si:H solar cells with nanostructured plasmonic back contacts, which demonstrate enhanced short circuit current densities compared to cells having flat or randomly textured back contacts. The primary photocurrent enhancement occurs in the spectral range from 550 nm to 800 nm. We use angle-resolved photocurrent spectroscopy to confirm that the enhanced absorption is due to coupling to guided modes supported by the cell. Full-field electromagnetic simulation of the absorption in the active a-Si:H layer agrees well with the experimental results. Furthermore, the nanopatterns were fabricated via an inexpensive, scalable, and precise nanopatterning method. These results should guide design of optimized, non-random nanostructured back reflectors for thin film solar cells.

[1]  Daniel Derkacs,et al.  Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices , 2008 .

[2]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[3]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[4]  R. Schropp,et al.  Understanding light trapping by light scattering textured back electrodes in thin film n‐i‐p-type silicon solar cells , 2007 .

[5]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[6]  Jamie D. Phillips,et al.  Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms , 2008 .

[7]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[8]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[9]  George M. Whitesides,et al.  Improved pattern transfer in soft lithography using composite stamps , 2002 .

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[12]  Marc A. Verschuuren,et al.  3D Photonic Structures by Sol-Gel Imprint Lithography , 2007 .

[13]  K. R. Catchpolea,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[14]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[15]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[16]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[17]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[18]  Dirk C. Keene Acknowledgements , 1975 .

[19]  Yong Chen,et al.  Roll in and roll out: a path to high-throughput nanoimprint lithography. , 2009, ACS nano.

[20]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[21]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[22]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[23]  Helmut Stiebig,et al.  Thin-film silicon solar cells with efficient periodic light trapping texture , 2007 .

[24]  Domenico Pacifici,et al.  How much can guided modes enhance absorption in thin solar cells? , 2009, Optics express.

[25]  M. Stutzmann,et al.  Periodic light coupler gratings in amorphous thin film solar cells , 2001 .

[26]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells , 2010 .

[27]  Miro Zeman,et al.  Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells , 2008 .

[28]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[29]  Peter Lechner,et al.  Status of Performance of Thin Film Silicon Solar Cells and Modules , 2008 .

[30]  F. Lederer,et al.  Engineering the randomness for enhanced absorption in solar cells , 2008 .

[31]  Milan Vanecek,et al.  Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD , 2009 .

[32]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[33]  R. Schropp,et al.  Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates , 2009 .

[34]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[35]  Marko Topič,et al.  Potential of light trapping in microcrystalline silicon solar cells with textured substrates , 2003 .

[36]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .