An interpolation technique for computing the DFT of a sparse sequence

An interpolation technique for the approximate computation of the DFT of a sparse sequence is presented. This new method is more efficient than FFT pruning, particularly for long sequences where the effectiveness of FFT pruning diminishes. This interpolation method for computing the DFT of a sparse sequence is very useful in filter design and spectrum analysis.

[1]  D. Goodman,et al.  Nine digital filters for decimation and interpolation , 1977 .

[2]  D. Skinner Pruning the decimation in-time FFT algorithm , 1976 .

[3]  R. Patney,et al.  Design of linear-phase FIR filters using pseudo-Boolean methods , 1979 .

[4]  Francis Grenez Design of f.i.r. linear phase digital filters to minimise the statistical word length of the coefficients , 1977 .

[5]  Chyi H. Lu,et al.  Optimal design of multirate digital filters with application to interpolation , 1979 .

[6]  Y. Lim Efficient special purpose linear programming for FIR filter design , 1983 .

[7]  J. Markel,et al.  FFT pruning , 1971 .

[8]  K. Steiglitz,et al.  Filter-length word-length tradeoffs in FIR digital filter design , 1980 .

[9]  Bede Liu,et al.  Calculation of narrow-band spectra by direct decimation , 1978 .

[10]  D. Kodek Design of optimal finite wordlength FIR digital filters using integer programming techniques , 1980 .

[11]  A. Constantinides,et al.  New integer programming scheme for nonrecursive digital filter design , 1979 .

[12]  Yeunung Chen,et al.  An optimal design of split-electrode CCD transversal filters , 1980 .

[13]  Kenneth Steiglitz,et al.  Comparison of optimal and local search methods for designing finite wordlength FIR digital filters , 1981 .

[14]  L. Rabiner Linear program design of finite impulse response (FIR) digital filters , 1972 .

[15]  Y. Lim,et al.  FIR filter design over a discrete powers-of-two coefficient space , 1983 .

[16]  A. Constantinides,et al.  Finite word length FIR filter design using integer programming over a discrete coefficient space , 1982 .

[17]  Y. Lim,et al.  Discrete coefficient FIR digital filter design based upon an LMS criteria , 1983 .

[18]  J. Cooley,et al.  A limited range discrete Fourier transform algorithm , 1980, ICASSP.

[19]  Jacques Lucien Daguet,et al.  Interpolation, extrapolation, and reduction of computation speed in digital filters , 1974 .