Unconditional well-posedness and IMEX improvement of a family of predictor-corrector methods in micromagnetics

Recently, Kim & Wilkening (Convergence of a mass-lumped finite element method for the Landau–Lifshitz equation, Quart. Appl. Math., 76, 383–405, 2018) proposed two novel predictor-corrector methods for the Landau–Lifshitz–Gilbert equation (LLG) in micromagnetics, which models the dynamics of the magnetization in ferromagnetic materials. Both integrators are based on the so-called Landau–Lifshitz form of LLG, use mass-lumped variational formulations discretized by first-order finite elements, and only require the solution of linear systems, despite the nonlinearity of LLG. The first(-order in time) method combines a linear update with an explicit projection of an intermediate approximation onto the unit sphere in order to fulfill the LLG-inherent unit-length constraint at the discrete level. In the second(-order in time) integrator, the projection step is replaced by a linear constraint-preserving variational formulation. In this paper, we extend the analysis of the integrators by proving unconditional wellposedness and by establishing a close connection of the methods with other approaches available in the literature. Moreover, the new analysis also provides a well-posed integrator for the Schrödinger map equation (which is the limit case of LLG for vanishing damping). Finally, we design an implicit-explicit strategy for the treatment of the lower-order field contributions, which significantly reduces the computational cost of the schemes, while preserving their theoretical properties.

[1]  I. Cimrák Convergence result for the constraint preserving mid-point scheme for micromagnetism , 2009 .

[2]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[3]  J. Wilkening,et al.  Convergence of a mass-lumped finite element method for the Landau-Lifshitz equation , 2016, 1608.07312.

[4]  F. Lin,et al.  The analysis of harmonic maps and their heat flows , 2008 .

[5]  Dirk Praetorius,et al.  Computational micromagnetics with Commics , 2018, Comput. Phys. Commun..

[6]  Boling Guo,et al.  The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .

[7]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[8]  Dirk Praetorius,et al.  Linear second-order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation , 2017, 1711.10715.

[9]  Dirk Praetorius,et al.  Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator , 2014, Comput. Math. Appl..

[10]  François Alouges,et al.  A new finite element scheme for Landau-Lifchitz equations , 2008 .

[11]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[12]  M. d’Aquino,et al.  Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule , 2005 .

[13]  Dirk Praetorius,et al.  Convergence of an implicit-explicit midpoint scheme for computational micromagnetics , 2018, Comput. Math. Appl..

[14]  Huadong Gao,et al.  Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation , 2014, SIAM J. Numer. Anal..

[15]  Michael Feischl,et al.  Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation , 2019, Math. Comput..

[16]  Ivan Cimrák,et al.  A Survey on the Numerics and Computations for the Landau-Lifshitz Equation of Micromagnetism , 2007 .

[17]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[18]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[19]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[20]  Thanh Tran,et al.  The Eddy Current-LLG Equations: FEM-BEM Coupling and A Priori Error Estimates , 2016, SIAM J. Numer. Anal..

[21]  E Weinan,et al.  A Gauss-Seidel projection method for micromagnetics simulations , 2001 .

[22]  Eric Dumas,et al.  On the Weak Solutions to the Maxwell–Landau–Lifshitz Equations and to the Hall–Magneto–Hydrodynamic Equations , 2013, Communications in Mathematical Physics.

[23]  Rong An,et al.  Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..

[24]  Andreas Prohl,et al.  Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..

[25]  Gilles Carbou,et al.  Regular solutions for Landau-Lifschitz equation in a bounded domain , 2001, Differential and Integral Equations.

[26]  Augusto Visintin,et al.  On Landau-Lifshitz’ equations for ferromagnetism , 1985 .

[27]  Changjian Xie,et al.  Convergence Analysis of A Second-order Semi-implicit Projection Method for Landau-Lifshitz Equation , 2019, 1902.09740.

[28]  François Alouges,et al.  CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU¿LIFSHITZ EQUATIONS IN MICROMAGNETISM , 2006 .

[29]  Christof Melcher,et al.  Existence of Partially Regular Solutions for Landau–Lifshitz Equations in ℝ3 , 2005 .

[30]  Sören Bartels,et al.  Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..

[31]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[32]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[33]  Andreas Prohl,et al.  Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..

[34]  Thanh Tran,et al.  Existence of Regular Solutions of the Landau-Lifshitz-Gilbert Equation in 3D with Natural Boundary Conditions , 2017, SIAM J. Math. Anal..

[35]  Carlos J. García-Cervera,et al.  NUMERICAL MICROMAGNETICS: A REVIEW , 2007 .

[36]  Cheng Wang,et al.  Second-order semi-implicit projection methods for micromagnetics simulations , 2019, J. Comput. Phys..

[37]  Konstantin Lipnikov,et al.  The mimetic finite difference method for the Landau-Lifshitz equation , 2016, J. Comput. Phys..

[38]  Michael Feischl,et al.  Multiscale modeling in micromagnetics: Existence of solutions and numerical integration , 2012, 1209.5548.

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.