The University of Amsterdam's Concept Detection System at ImageCLEF 2009

Our group within the University of Amsterdam participated in the large-scale visual concept detection task of ImageCLEF 2009. Our experiments focus on increasing the robustness of the individual concept detectors based on the bag-of-words approach, and less on the hierarchical nature of the concept set used. To increase the robustness of individual concept detectors, our experiments emphasize in particular the role of visual sampling, the value of color invariant features, the influence of codebook construction, and the effectiveness of kernel-based learning parameters. The participation in ImageCLEF 2009 has been successful, resulting in the top ranking for the large-scale visual concept detection task in terms of both EER and AUC. For 40 out of 53 individual concepts, we obtain the best performance of all submissions to this task. For the hierarchical evaluation, which considers the whole hierarchy of concepts instead of single detectors, using the concept likelihoods estimated by our detectors directly works better than scaling these likelihoods based on the class priors.

[1]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[3]  Koen E. A. van de Sande,et al.  Color Descriptors for Object Category Recognition , 2008, CGIV/MCS.

[4]  Arnold W. M. Smeulders,et al.  Real-Time Visual Concept Classification , 2010, IEEE Transactions on Multimedia.

[5]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[6]  P. Bartlett,et al.  Probabilities for SV Machines , 2000 .

[7]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[8]  Arnold W. M. Smeulders,et al.  Real-time bag of words, approximately , 2009, CIVR '09.

[9]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[10]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[11]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Gabriela Csurka,et al.  LEAR and XRCE's Participation to Visual Concept Detection Task - ImageCLEF 2010 , 2010, CLEF.

[17]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[18]  Koen E. A. van de Sande,et al.  Accelerating Visual Categorization with the GPU , 2010, ECCV Workshops.

[19]  Dong Wang,et al.  Video diver: generic video indexing with diverse features , 2007, MIR '07.

[20]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[21]  Stefanie Nowak,et al.  Overview of the CLEF 2009 Large Scale - Visual Concept Detection and Annotation Task , 2009, CLEF.

[22]  Stefanie Nowak,et al.  The CLEF 2011 Photo Annotation and Concept-based Retrieval Tasks , 2011, CLEF.

[23]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..

[24]  Marcel Worring,et al.  Social negative bootstrapping for visual categorization , 2011, ICMR '11.

[25]  Stefanie Nowak,et al.  New Strategies for Image Annotation: Overview of the Photo Annotation Task at ImageCLEF 2010 , 2010, CLEF.

[26]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[27]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[28]  Koen E. A. van de Sande,et al.  University of Amsterdam at the Visual Concept Detection and Annotation Tasks , 2010, ImageCLEF.

[29]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Hsuan-Tien Lin,et al.  A note on Platt’s probabilistic outputs for support vector machines , 2007, Machine Learning.

[31]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  Koen E. A. van de Sande,et al.  A comparison of color features for visual concept classification , 2008, CIVR '08.

[34]  Koen E. A. van de Sande,et al.  Empowering Visual Categorization With the GPU , 2011, IEEE Transactions on Multimedia.

[35]  Cordelia Schmid,et al.  Learning Object Representations for Visual Object Class Recognition , 2007, ICCV 2007.