A digital microfluidic interface between solid-phase microextraction and liquid chromatography-mass spectrometry.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  M. Schöneshöfer,et al.  Specific estimation of fifteen unconjugated, non-metabolized steroid hormones in human urine. , 1983, Journal of steroid biochemistry.

[3]  J. Pawliszyn,et al.  Solid phase microextraction with thermal desorption using fused silica optical fibers , 1990 .

[4]  J. Pawliszyn,et al.  Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography , 1995 .

[5]  J. Pawliszyn,et al.  Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of alkylphenol ethoxylate surfactants in water. , 1996, Analytical chemistry.

[6]  S. Ito,et al.  Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. , 2002, Journal of chromatography. A.

[7]  J. Pawliszyn,et al.  Automation of solid‐phase microextraction , 2005 .

[8]  E. Al-Dujaili Development and validation of a simple and direct ELISA method for the determination of conjugated (glucuronide) and non-conjugated testosterone excretion in urine. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[9]  F. Lanças,et al.  Development of an improved heated interface for coupling solid-phase microextraction to high-performance liquid chromatography. , 2006, Journal of chromatography. A.

[10]  K. Jamrozik,et al.  In men older than 70 years, total testosterone remains stable while free testosterone declines with age. The Health in Men Study. , 2007, European journal of endocrinology.

[11]  T. Veenstra,et al.  A liquid chromatography–mass spectrometry method for the quantitative analysis of urinary endogenous estrogen metabolites , 2007, Nature Protocols.

[12]  J. M. Roman,et al.  Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. , 2007, Analytical chemistry.

[13]  H. Lord Strategies for interfacing solid-phase microextraction with liquid chromatography. , 2007, Journal of chromatography. A.

[14]  A. Wheeler,et al.  A digital microfluidic approach to homogeneous enzyme assays. , 2008, Analytical chemistry.

[15]  M. Kaljurand,et al.  Digital microfluidic sampler for a portable capillary electropherograph. , 2009, Analytical chemistry.

[16]  J. Pawliszyn,et al.  Investigation of the effect of the extraction phase geometry on the performance of automated solid-phase microextraction. , 2009, Analytical chemistry.

[17]  E. Diamandis,et al.  Direct measurement of serum free testosterone by ultrafiltration followed by liquid chromatography tandem mass spectrometry. , 2010, Clinical biochemistry.

[18]  J. Pawliszyn,et al.  In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites , 2011, Nature Protocols.

[19]  Jim He,et al.  Automated Digital Microfluidic Sample Preparation for Next-Generation DNA Sequencing , 2011, Journal of laboratory automation.

[20]  J. Pawliszyn,et al.  Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples. , 2011, Analytical chemistry.

[21]  J. Pawliszyn,et al.  Nondestructive sampling of living systems using in vivo solid-phase microextraction. , 2011, Chemical reviews.

[22]  M. Kaljurand,et al.  Electrowetting on dielectric actuation of droplets with capillary electrophoretic zones for MALDI mass spectrometric analysis , 2012, Electrophoresis.

[23]  Yong Chen,et al.  Improvement of solid phase microextraction fiber assembly and interface for liquid chromatography. , 2012, Analytica chimica acta.

[24]  K. Audus,et al.  Digital microfluidics. , 2012, Annual review of analytical chemistry.

[25]  E. Kumacheva,et al.  Digital microfluidic hydrogel microreactors for proteomics , 2012, Proteomics.

[26]  Robert P. Luoma,et al.  Digital microfluidic magnetic separation for particle-based immunoassays. , 2012, Analytical chemistry.

[27]  Steve C. C. Shih,et al.  Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. , 2012, Analytical chemistry.

[28]  Mais J. Jebrail,et al.  Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. , 2012, Lab on a chip.

[29]  M. Kaljurand,et al.  Electrowetting-on-dielectric actuation of droplets with capillary electrophoretic zones for off-line mass spectrometric analysis. , 2012, Journal of chromatography. A.

[30]  J. Pawliszyn,et al.  Solid-phase microextraction: a complementary in vivo sampling method to microdialysis. , 2013, Angewandte Chemie.

[31]  A. Wheeler,et al.  DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement , 2013 .

[32]  J. Namieśnik,et al.  Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. , 2013, Chemical reviews.

[33]  J. Pawliszyn,et al.  Micelle assisted thin-film solid phase microextraction: a new approach for determination of quaternary ammonium compounds in environmental samples. , 2014, Analytical chemistry.

[34]  A. Wheeler,et al.  Paper Microfluidics Goes Digital , 2014, Advanced materials.

[35]  K. Shin,et al.  Active Digital Microfluidic Paper Chips with Inkjet‐Printed Patterned Electrodes , 2014, Advanced materials.

[36]  Da-Jeng Yao,et al.  EWOD microfluidic systems for biomedical applications , 2014 .

[37]  Steve C. C. Shih,et al.  Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics. , 2014, Bioanalysis.

[38]  C. S. Andreassen,et al.  The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. , 2014, Annals of epidemiology.

[39]  R. Oleschuk,et al.  Digital microfluidic platform for human plasma protein depletion. , 2014, Analytical chemistry.

[40]  R. Cooks,et al.  Analysis on the go: quantitation of drugs of abuse in dried urine with digital microfluidics and miniature mass spectrometry. , 2014, Analytical chemistry.

[41]  Yong Chen,et al.  A new interface for coupling solid phase microextraction with liquid chromatography. , 2014, Analytica chimica acta.

[42]  J. Pawliszyn,et al.  Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances. , 2014, Analytica chimica acta.

[43]  Hian Kee Lee,et al.  Application of electro-enhanced solid phase microextraction combined with gas chromatography-mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. , 2014, Journal of chromatography. A.

[44]  A. Wheeler,et al.  Direct Interface between Digital Microfluidics and High Performance Liquid Chromatography-Mass Spectrometry. , 2015, Analytical chemistry.

[45]  A. Wheeler,et al.  A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides , 2015, Analytical and Bioanalytical Chemistry.