Ordinary differential equations of molecular dynamics

Abstract The ordinary differential equations of Newtonian dynamics are used in atomic simulations with the method of molecular dynamics. The basic issues are surveyed and standard algorithms are described. Several algorithmic variants are discussed. Some advanced ideas relating to parallel computation are considered.

[1]  M. Reichelt Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation , 1993 .

[2]  Bernard Pettitt,et al.  Molecular dynamics on a distributed‐memory multiprocessor , 1992 .

[3]  E. J. Dean,et al.  On the discretization of some second order in time differential equations - Applications to nonlinear wave problems , 1990 .

[4]  T. Schlick,et al.  Molecular dynamics by the backward-Euler method , 1989 .

[5]  C. Brooks Computer simulation of liquids , 1989 .

[6]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[7]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[8]  M. Fixman Classical statistical mechanics of constraints: a theorem and application to polymers. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[10]  J. A. McCammon,et al.  Side-chain rotational isomerization in proteins: a mechanism involving gating and transient packing defects , 1983 .

[11]  Tamar Schlick,et al.  Can classical equations simulate quantum‐mechanical behavior? a molecular dynamics investigation of a diatomic molecule with a morse potential , 1989 .

[12]  Peter A. Kollman,et al.  AMBERCUBE MD, parallelization of Amber's molecular dynamics module for distributed‐memory hypercube computers , 1993, J. Comput. Chem..

[13]  T Schlick,et al.  Supercoiled DNA energetics and dynamics by computer simulation. , 1992, Journal of molecular biology.

[14]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[15]  Bernard Philippe,et al.  L-Stable Parallel One-Block Methods for Stiff ODE's , 1993, PPSC.

[16]  Bernard Pettitt,et al.  Stochastic dynamics simulations of the alanine dipeptide using a solvent-modified potential energy surface , 1993 .

[17]  R. Glowinski,et al.  Vibrations of Euler-Bernoulli Beams with Pointwise Obstacles , 1991 .

[18]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[19]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[20]  C. Peskin Analysis of the backward-Euler/Langevin method for molecular dynamics , 1990 .

[21]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[22]  D. Tildesley,et al.  Multiple time-step methods in molecular dynamics , 1978 .

[23]  James Andrew McCammon,et al.  Parallel Molecular Dynamics , 1991, PPSC.

[24]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[25]  Reinhard von Hanxleden,et al.  Evaluating parallel languages for molecular dynamics computations , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[26]  Patrick H. Worley,et al.  Parallelizing Across Time When Solving Time-Dependent Partial Differential Equations , 1991, PPSC.

[27]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[28]  Joseph Ford,et al.  How random is a coin toss , 1983 .