On the potential of recurrent neural networks for modeling path dependent plasticity

[1]  D. Mohr,et al.  Neural network model describing the temperature- and rate-dependent stress-strain response of polypropylene , 2020 .

[2]  D. Mohr,et al.  Strain rate and temperature dependent fracture of aluminum alloy 7075: Experiments and neural network modeling , 2020 .

[3]  Maysam Gorji,et al.  Towards neural network models for describing the large deformation behavior of sheet metal , 2019, IOP Conference Series: Materials Science and Engineering.

[4]  Lars Greve,et al.  Necking-induced fracture prediction using an artificial neural network trained on virtual test data , 2019, Engineering Fracture Mechanics.

[5]  Usman Ali,et al.  Application of artificial neural networks in micromechanics for polycrystalline metals , 2019, International Journal of Plasticity.

[6]  Christian C. Roth,et al.  Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel , 2019, International Journal of Plasticity.

[7]  R. Jones,et al.  Predicting the mechanical response of oligocrystals with deep learning , 2019, Computational Materials Science.

[8]  Zeliang Liu,et al.  Exploring the 3D architectures of deep material network in data-driven multiscale mechanics , 2019, Journal of the Mechanics and Physics of Solids.

[9]  T. Tancogne-Dejean,et al.  Hosford-Coulomb ductile failure model for shell elements: Experimental identification and validation for DP980 steel and aluminum 6016-T4 , 2018, International Journal of Solids and Structures.

[10]  Zeliang Liu,et al.  A Deep Material Network for Multiscale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous Materials , 2018, Computer Methods in Applied Mechanics and Engineering.

[11]  Wolfgang Ludwig,et al.  Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials , 2018, npj Computational Materials.

[12]  W. Ludwig,et al.  Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations , 2018, Journal of the Mechanics and Physics of Solids.

[13]  T. Tancogne-Dejean,et al.  Heterogeneous random medium plasticity and fracture model of additively-manufactured Ti-6A1-4V , 2018 .

[14]  T. Nguyen,et al.  Interaction of rate- and size-effect using a dislocation density based strain gradient viscoplasticity model , 2017 .

[15]  J. Imbert,et al.  Effects of coupling anisotropic yield functions with the optimization process of extruded aluminum front rail geometries in crashworthiness , 2017 .

[16]  D. Mohr,et al.  Paint-bake effect on the plasticity and fracture of pre-strained aluminum 6451 sheets , 2017 .

[17]  Michael J. Worswick,et al.  Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting , 2016 .

[18]  Daniel E. Green,et al.  The Use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets , 2016 .

[19]  D. Dini,et al.  The mechanisms governing the activation of dislocation sources in aluminum at different strain rates , 2015 .

[20]  Frédéric Barlat,et al.  Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels , 2014 .

[21]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[22]  Frédéric Barlat,et al.  EXTENSION OF HOMOGENEOUS ANISOTROPIC HARDENING MODEL TO CROSS-LOADING WITH LATENT EFFECTS , 2013 .

[23]  Frédéric Barlat,et al.  An alternative to kinematic hardening in classical plasticity , 2011 .

[24]  Tomonari Furukawa,et al.  Neural network constitutive modelling for non‐linear characterization of anisotropic materials , 2011 .

[25]  T. Belytschko,et al.  Thermal softening induced plastic instability in rate-dependent materials , 2009 .

[26]  Hoan-Kee Kim,et al.  Nonlinear constitutive models for FRP composites using artificial neural networks , 2007 .

[27]  Frédéric Barlat,et al.  Work-hardening model for polycrystalline metals under strain reversal at large strains , 2007 .

[28]  Hamid Garmestani,et al.  Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network , 2006 .

[29]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[30]  Frédéric Barlat,et al.  Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample , 2003 .

[31]  M. Lefik,et al.  Artificial neural network as an incremental non-linear constitutive model for a finite element code , 2003 .

[32]  Fusahito Yoshida,et al.  A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation , 2002 .

[33]  F. Mollica The inelastic behavior of metals subject to loading reversal , 2001 .

[34]  Magdalena Ortiz,et al.  A micromechanical model of hardening, rate sensitivity and thermal softening in BCC single crystals , 2001, cond-mat/0103284.

[35]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[36]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[37]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[38]  O. Sherby,et al.  Large strain deformation of polycrystalline metals at low homologous temperatures , 1975 .

[39]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  Dirk Mohr,et al.  Predicting shear fracture of aluminum 6016-T4 during deep drawing: Combining Yld-2000 plasticity with Hosford Coulomb fracture model , 2018 .

[41]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[42]  Philip Raoul Peters,et al.  Yield Functions taking into account Anisotropic Hardening Effects for an Improved Virtual Representation of Deep Drawing Processes , 2015 .

[43]  A. Rauh,et al.  A NEURAL NETWORK BASED ELASTO-PLASTICITY MATERIAL MODEL , 2012 .

[44]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures , 2002 .

[45]  S. Solla,et al.  Consistent and Minimal Springback Using a Stepped Binder Force Trajectory and Neural Network Control , 2000 .

[46]  R. Hill Constitutive modelling of orthotropic plasticity in sheet metals , 1990 .

[47]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[48]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[49]  K. J. Marsh,et al.  The effect of strain rate on the post-yield flow of mild steel , 1963 .

[50]  W. Prager,et al.  A NEW METHOD OF ANALYZING STRESSES AND STRAINS IN WORK - HARDENING PLASTIC SOLIDS , 1956 .