The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

BackgroundCopy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs.ResultsWe describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation.ConclusionsCNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.

[1]  Geoffrey H. Siwo,et al.  Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum , 2010, BMC Genomics.

[2]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[3]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[4]  D. Conway,et al.  Gene copy number variation throughout the Plasmodium falciparum genome , 2009, BMC Genomics.

[5]  John C. Tan,et al.  Chloroquine susceptibility and reversibility in a Plasmodium falciparum genetic cross , 2010, Molecular microbiology.

[6]  D. Watkins-Chow,et al.  Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. , 2007, Genome research.

[7]  N. Day,et al.  Plasmodium falciparum pfmdr1 Amplification, Mefloquine Resistance, and Parasite Fitness , 2009, Antimicrobial Agents and Chemotherapy.

[8]  Deborah A Nickerson,et al.  De novo rates and selection of large copy number variation. , 2010, Genome research.

[9]  Zbynek Bozdech,et al.  Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates , 2009, PLoS pathogens.

[10]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[11]  Asako Tan,et al.  Optimizing comparative genomic hybridization probes for genotyping and SNP detection in Plasmodium falciparum. , 2009, Genomics.

[12]  P. Cahan,et al.  A High-Resolution Map of Segmental DNA Copy Number Variation in the Mouse Genome , 2006, PLoS genetics.

[13]  F. Nosten,et al.  Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. , 2006, Molecular biology and evolution.

[14]  A. Scherf,et al.  Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes. , 1992, Nucleic acids research.

[15]  E. Eichler,et al.  Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution , 2007, Nature Genetics.

[16]  Deepak Gaur,et al.  Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. , 2008, Cell host & microbe.

[17]  Kenny Q. Ye,et al.  Large-Scale Copy Number Polymorphism in the Human Genome , 2004, Science.

[18]  Thomas J. Nicholas,et al.  The genomic architecture of segmental duplications and copy number variants in dogs , 2009 .

[19]  T. Triglia,et al.  A chromosome 9 deletion in Plasmodium falciparum results in loss of cytoadherence. , 1992, Memorias do Instituto Oswaldo Cruz.

[20]  A. Cowman,et al.  Selection for high‐level chloroquine resistance results in deamplification of the pfmdr1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. , 1992, The EMBO journal.

[21]  J. Krungkrai,et al.  Guanosine triphosphate cyclohydrolase in Plasmodium falciparum and other Plasmodium species. , 1985, Molecular and biochemical parasitology.

[22]  Stylianos E. Antonarakis,et al.  Chromosome 21 and Down syndrome: from genomics to pathophysiology , 2004, Nature Reviews Genetics.

[23]  C. Wilson,et al.  Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. , 1989, Science.

[24]  M. Ferdig,et al.  Gene copy number and malaria biology. , 2009, Trends in parasitology.

[25]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[26]  M. Gatton,et al.  Deamplification of pfmdr1-Containing Amplicon on Chromosome 5 in Plasmodium falciparum Is Associated with Reduced Resistance to Artelinic Acid In Vitro , 2010, Antimicrobial Agents and Chemotherapy.

[27]  S. Wuchty,et al.  Regulatory Hotspots in the Malaria Parasite Genome Dictate Transcriptional Variation , 2008, PLoS biology.

[28]  J. Egly,et al.  DNA Repair and Transcriptional Deficiencies Caused by Mutations in the Drosophila p52 Subunit of TFIIH Generate Developmental Defects and Chromosome Fragility , 2007, Molecular and Cellular Biology.

[29]  J. Lupski,et al.  Genomic disorders ten years on , 2009, Genome Medicine.

[30]  E. Winzeler,et al.  Microarray-based comparative genomic analyses of the human malaria parasite Plasmodium falciparum using Affymetrix arrays. , 2005, Molecular and biochemical parasitology.

[31]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[32]  Matthias Frank,et al.  Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum. , 2008, International journal for parasitology.

[33]  Junjun Zhang,et al.  Hotspots for copy number variation in chimpanzees and humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Bushnell,et al.  Genes For Tfb2, Tfb3, and Tfb4 Subunits of Yeast Transcription/Repair Factor IIH , 1997, The Journal of Biological Chemistry.

[35]  T. Triglia,et al.  Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events , 1991, Molecular and cellular biology.

[36]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[37]  J. Haynes,et al.  Culture of human malaria parasites Plasmodium falciparum , 1976, Nature.

[38]  Thomas J. Nicholas,et al.  The genomic architecture of segmental duplications and associated copy number variants in dogs. , 2008, Genome research.

[39]  Ajay N. Jain,et al.  Assembly of microarrays for genome-wide measurement of DNA copy number , 2001, Nature Genetics.

[40]  Serge Batalov,et al.  Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum , 2009, Genome Biology.

[41]  Ming Yi,et al.  Detection of genome-wide polymorphisms in the AT-rich Plasmodium falciparum genome using a high-density microarray , 2008, BMC Genomics.

[42]  A. Cowman,et al.  Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Nahashon,et al.  An initial map of chromosomal segmental copy number variations in the chicken , 2010, BMC Genomics.

[44]  L. Corcoran,et al.  Chromosome size polymorphisms in plasmodium falciparum can involve deletions and are frequent in natural parasite populations , 1986, Cell.

[45]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[46]  L. Corcoran,et al.  Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum , 1988, Cell.

[47]  John C. Tan,et al.  High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum , 2011, BMC Genomics.

[48]  D. Tautz,et al.  Copy number changes of CNV regions in intersubspecific crosses of the house mouse. , 2010, Molecular biology and evolution.

[49]  Tad S Sonstegard,et al.  Analysis of copy number variations among diverse cattle breeds. , 2010, Genome research.

[50]  J. E. Hyde,et al.  Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. , 2004, Molecular and biochemical parasitology.

[51]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[52]  J. Mullikin,et al.  Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains , 2005, Nature Genetics.

[53]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[54]  S. Kyes,et al.  Var gene diversity in Plasmodium falciparum is generated by frequent recombination events. , 2000, Molecular and biochemical parasitology.

[55]  D. Kemp,et al.  Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[56]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[57]  Joanne M. Morrisey,et al.  Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum , 1993, Molecular and cellular biology.

[58]  Yingyao Zhou,et al.  A Systematic Map of Genetic Variation in Plasmodium falciparum , 2006 .

[59]  J. Ravetch,et al.  Chromatin structure determines the sites of chromosome breakages in Plasmodium falciparum. , 1994, Nucleic Acids Research.

[60]  N. French,et al.  Genetic changes during laboratory propagation: copy number At the reticulocyte-binding protein 1 locus of Plasmodium falciparum. , 2010, Molecular and biochemical parasitology.

[61]  P. Nilsson,et al.  Genome wide gene amplifications and deletions in Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[62]  X. Su,et al.  Dissecting the loci of low‐level quinine resistance in malaria parasites , 2004, Molecular microbiology.

[63]  Christina A. Castellani,et al.  Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia , 2011, PloS one.

[64]  Ira M. Hall,et al.  Recurrent DNA copy number variation in the laboratory mouse , 2007, Nature Genetics.

[65]  L. Feuk,et al.  Structural variants: changing the landscape of chromosomes and design of disease studies. , 2006, Human molecular genetics.

[66]  S. Foote,et al.  Chromosomes of malaria parasites. , 1989, Trends in genetics : TIG.

[67]  R. Carter,et al.  Gene inactivation of Pf11‐1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte‐specific protein with a potential role in gametogenesis. , 1992, The EMBO journal.

[68]  A. Scherf,et al.  Compartmentalization of genes coding for immunodominant antigens to fragile chromosome ends leads to dispersed subtelomeric gene families and rapid gene evolution in Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[69]  Tomas W. Fitzgerald,et al.  Origins and functional impact of copy number variation in the human genome , 2010, Nature.

[70]  Matthew Hurles,et al.  Gene Duplication: The Genomic Trade in Spare Parts , 2004, PLoS biology.

[71]  R. Carter,et al.  Characterization of a Plasmodium falciparium mutant that has deleted the majority of the gametocyte-specific Pf11-1 locus. , 1992, Memorias do Instituto Oswaldo Cruz.

[72]  Thomas W. Mühleisen,et al.  Large recurrent microdeletions associated with schizophrenia , 2008, Nature.

[73]  Hongyue Dai,et al.  Widespread aneuploidy revealed by DNA microarray expression profiling , 2000, Nature Genetics.

[74]  A. Scherf,et al.  Subtelomeric chromosome instability in Plasmodium falciparum: short telomere-like sequence motifs found frequently at healed chromosome breakpoints. , 1994, Mutation research.

[75]  A. Cowman,et al.  Expression of the RESA gene in Plasmodium falciparum isolate FCR3 is prevented by a subtelomeric deletion , 1989, Molecular and cellular biology.

[76]  A. Vaidya,et al.  A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito-infectivity and male gametogenesis. , 1995, Molecular and biochemical parasitology.

[77]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[78]  M. Wahlgren,et al.  A highly conserved segmental duplication in the subtelomeres of Plasmodium falciparum chromosomes varies in copy number , 2008, Malaria Journal.

[79]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[80]  C. B. Bridges,et al.  THE BAR "GENE" A DUPLICATION. , 1936, Science.

[81]  Hans H. Cheng,et al.  A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. , 2009, Genome research.

[82]  W. Stein,et al.  Genetic Predisposition Favors the Acquisition of Stable Artemisinin Resistance in Malaria Parasites , 2010, Antimicrobial Agents and Chemotherapy.

[83]  S. Bergmann,et al.  Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains , 2005, Molecular microbiology.

[84]  P. Newton,et al.  Adaptive Copy Number Evolution in Malaria Parasites , 2008, PLoS genetics.

[85]  T. Richmond,et al.  Analysis of chromosome breakpoints in neuroblastoma at sub‐kilobase resolution using fine‐tiling oligonucleotide array CGH , 2005, Genes, chromosomes & cancer.

[86]  S. V. Heesch,et al.  Distribution and functional impact of DNA copy number variation in the rat , 2008, Nature Genetics.

[87]  T. Wellems,et al.  Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Jenn K Thompson,et al.  Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Vivek Gopalan,et al.  High recombination rates and hotspots in a Plasmodium falciparum genetic cross , 2011, Genome Biology.

[90]  J. Ravetch,et al.  A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype , 1986, Nature.

[91]  C. Bendixen,et al.  Copy number variation in the bovine genome , 2010, BMC Genomics.

[92]  Arthur S. Lee,et al.  Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. , 2008, Human molecular genetics.

[93]  J. Lupski,et al.  Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication. , 1993, American journal of human genetics.

[94]  G. Churchill,et al.  A statistical framework for quantitative trait mapping. , 2001, Genetics.

[95]  R. Gibbs,et al.  Genomic segmental polymorphisms in inbred mouse strains , 2004, Nature Genetics.

[96]  J. Wootton,et al.  Genetic mapping in the human malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[97]  C. Bendixen,et al.  A Snapshot of CNVs in the Pig Genome , 2008, PloS one.

[98]  T. Wellems,et al.  Interchromosomal exchange of a large subtelomeric segment in a Plasmodium falciparum cross. , 1994, The EMBO journal.

[99]  C. Claudel-Renard,et al.  MADIBA: A web server toolkit for biological interpretation of Plasmodium and plant gene clusters , 2008, BMC Genomics.

[100]  Takahito Watanabe,et al.  A new approach to species determination for yeast strains: DNA microarray‐based comparative genomic hybridization using a yeast DNA microarray with 6000 genes , 2004, Yeast.

[101]  R. Coppel,et al.  Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum , 1985, Nature.

[102]  Philip M. Kim,et al.  The current excitement about copy-number variation: how it relates to gene duplications and protein families. , 2008, Current opinion in structural biology.

[103]  X. Su,et al.  Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[104]  M. Pellegrini,et al.  Copy number variation influences gene expression and metabolic traits in mice. , 2009, Human molecular genetics.

[105]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[106]  R. Redon,et al.  Copy Number Variation: New Insights in Genome Diversity References , 2006 .