Efficient High Order Matching

We present a computational approach to high-order matching of data sets in Rd. Those are matchings based on data affinity measures that score the matching of more than two pairs of points at a time. High-order affinities are represented by tensors and the matching is then given by a rank-one approximation of the affinity tensor and a corresponding discretization. Our approach is rigorously justified by extending Zass and Shashua's hypergraph matching to high-order spectral matching. This paves the way for a computationally efficient dual-marginalization spectral matching scheme. We also show that, based on the spectral properties of random matrices, affinity tensors can be randomly sparsified while retaining the matching accuracy. Our contributions are experimentally validated by applying them to synthetic as well as real data sets.

[1]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[2]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Dimitris Achlioptas,et al.  Fast computation of low-rank matrix approximations , 2007, JACM.

[5]  Alexei A. Efros,et al.  Discovering Texture Regularity as a Higher-Order Correspondence Problem , 2006, ECCV.

[6]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[10]  M. SIAMJ. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .

[11]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[12]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[14]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[15]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[16]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[17]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[18]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[19]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[21]  George Loizou,et al.  Computer vision and pattern recognition , 2007, Int. J. Comput. Math..

[22]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[23]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[24]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[25]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[26]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[27]  Venu Madhav Govindu,et al.  A tensor decomposition for geometric grouping and segmentation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[29]  Tamir Hazan,et al.  Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization , 2006, ECCV.

[30]  Ghassan Hamarneh,et al.  A graph-based approach to skin mole matching incorporating template-normalized coordinates , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Jean Ponce,et al.  A tensor-based algorithm for high-order graph matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[33]  Pietro Perona,et al.  Beyond pairwise clustering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[35]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[37]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[39]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[40]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.