Study on thermophysical properties of alumina nanoparticles enhanced ionic liquids (NEILs): A modeling approach

[1]  T. Abdeljawad,et al.  Estimating the Heat Capacity of Non-Newtonian Ionanofluid Systems Using ANN, ANFIS, and SGB Tree Algorithms , 2020, Applied Sciences.

[2]  A. Minea,et al.  Viscosity and isobaric specific heat capacity of alumina nanoparticle enhanced ionic liquids: An experimental approach , 2020 .

[3]  M. Asadizadeh,et al.  Prediction of surface tension of the binary mixtures containing ionic liquid using heuristic approaches; an input parameters investigation , 2020, Journal of Molecular Liquids.

[4]  M. Riad,et al.  Recent processes for the production of alumina nano-particles , 2020 .

[5]  R. Selvakumar,et al.  Heat transfer performance of Al 2 O 3 − ([C4mim][NT f2]) nano-suspension in a 2 − D channel for application in a flat plate solar collector , 2019 .

[6]  A. Minea,et al.  Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids , 2019, Journal of Molecular Liquids.

[7]  Majid Moosavi,et al.  A comparative study in the prediction of thermal conductivity enhancement of nanofluids using ANN-MLP, ANN-RBF, ANFIS, and GMDH methods , 2019, Journal of the Iranian Chemical Society.

[8]  Mariano Pierantozzi,et al.  Molecular thermodynamic modeling of surface tensions of some fatty acid esters and biodiesels , 2019, Journal of Molecular Liquids.

[9]  Á. Mulero,et al.  Predictive methods and semi-classical Equations of State for pure ionic liquids: A review , 2019, The Journal of Chemical Thermodynamics.

[10]  S. Hosseini,et al.  Viscosities of some fatty acid esters and biodiesel fuels from a rough hard-sphere-chain model and artificial neural network , 2019, Fuel.

[11]  E. Hassel,et al.  Viscosity of 1-ethyl-3-methylimidazolium methanesulfonate over a wide range of temperature and Vogel–Tamman–Fulcher model , 2018 .

[12]  B. Sundén,et al.  A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer , 2018, Journal of Thermal Analysis and Calorimetry.

[13]  Hamed Farhangian,et al.  A simple group contribution correlation for modeling the surface tension of pure ionic liquids , 2018, Journal of Molecular Liquids.

[14]  A. Minea,et al.  A review on development of ionic liquid based nanofluids and their heat transfer behavior , 2018, Renewable and Sustainable Energy Reviews.

[15]  M. Lourenço,et al.  [C2mim][CH3SO3] – A Suitable New Heat Transfer Fluid? Part 1. Thermophysical and Toxicological Properties , 2018, Industrial & Engineering Chemistry Research.

[16]  A. Pádua,et al.  Thermal Conductivity of Ionic Liquids and IoNanofluids and Their Feasibility as Heat Transfer Fluids , 2018 .

[17]  A. Shojaeian New experimental and modeling based on the N-Wilson-NRF equation for surface tension of aqueous alkanolamine binary mixtures , 2018 .

[18]  J. Valderrama,et al.  Artificial neural network for the correlation and prediction of surface tension of refrigerants , 2017 .

[19]  J. A. Lazzús,et al.  Estimating the Temperature-Dependent Surface Tension of Ionic Liquids Using a Neural Network-Based Group Contribution Method , 2017 .

[20]  Mohammad Hemmat Esfe,et al.  Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids , 2017 .

[21]  M. Lashkarbolooki Artificial neural network modeling for prediction of binary surface tension containing ionic liquid , 2017 .

[22]  Alina Adriana Minea,et al.  Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches , 2017 .

[23]  Jian-hua Zhao,et al.  Measurement of thermal conductivity, viscosity and density of ionic liquid [EMIM][DEP]-based nanofluids , 2016 .

[24]  A. A. Koroteev,et al.  Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages , 2015 .

[25]  J. Khan,et al.  Thermal performance of Al2O3 Nanoparticle Enhanced Ionic Liquids (NEILs) for Concentrated Solar Power (CSP) applications , 2015 .

[26]  J. Khan,et al.  Experimental investigation of natural convection heat transfer of Al2O3 Nanoparticle Enhanced Ionic Liquids (NEILs) , 2015 .

[27]  John C. Cancilla,et al.  Viscosity estimation of binary mixtures of ionic liquids through a multi-layer perceptron model , 2015 .

[28]  P. Simões,et al.  Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids , 2013 .

[29]  A. Hezave,et al.  Correlating bubble points of ternary systems involving nine solvents and two ionic liquids using artificial neural network , 2013 .

[30]  A. Visser,et al.  Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids , 2013 .

[31]  S. M. Sohel Murshed,et al.  Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids , 2012 .

[32]  H. Ohno,et al.  Ionic liquid/water mixtures: from hostility to conciliation. , 2012, Chemical communications.

[33]  S. Ye,et al.  Effects of specific adsorption on the differential capacitance of imidazolium-based ionic liquid electrolytes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  G. Longo,et al.  Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids , 2012 .

[35]  R. S. Bhoopal,et al.  Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach , 2011 .

[36]  R. Devan,et al.  Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid , 2011 .

[37]  H. Karimi,et al.  Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks , 2011 .

[38]  G. J. Kabo,et al.  Heat Capacity of Ionic Liquids: Experimental Determination and Correlations with Molar Volume , 2010 .

[39]  Elisa Langa,et al.  Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids , 2010 .

[40]  H. Kurt,et al.  Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks , 2009 .

[41]  Juan A. Lazzús,et al.  Critical Properties, Normal Boiling Temperature, and Acentric Factor of Another 200 Ionic Liquids , 2008 .

[42]  Farhad Gharagheizi,et al.  QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN , 2007 .

[43]  A. K. Binark,et al.  Artificial neural network approach for evaluation of temperature and density profiles of salt gradient solar pond , 2007 .

[44]  Mustafa Canakci,et al.  Performance and exhaust emissions of a gasoline engine using artificial neural network , 2007 .

[45]  L. A. Minim,et al.  Modeling Thermal Conductivity, Specific Heat, and Density of Milk: A Neural Network Approach , 2004 .

[46]  Patrick K. Simpson,et al.  Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations , 1990 .