The comprehensive microbial resource

The Comprehensive Microbial Resource or CMR (http://cmr.jcvi.org) provides a web-based central resource for the display, search and analysis of the sequence and annotation for complete and publicly available bacterial and archaeal genomes. In addition to displaying the original annotation from GenBank, the CMR makes available secondary automated structural and functional annotation across all genomes to provide consistent data types necessary for effective mining of genomic data. Precomputed homology searches are stored to allow meaningful genome comparisons. The CMR supplies users with over 50 different tools to utilize the sequence and annotation data across one or more of the 571 currently available genomes. At the gene level users can view the gene annotation and underlying evidence. Genome level information includes whole genome graphical displays, biochemical pathway maps and genome summary data. Comparative tools display analysis between genomes with homology and genome alignment tools, and searches across the accessions, annotation, and evidence assigned to all genes/genomes are available. The data and tools on the CMR aid genomic research and analysis, and the CMR is included in over 200 scientific publications. The code underlying the CMR website and the CMR database are freely available for download with no license restrictions.

[1]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[2]  D. Lipman,et al.  National Center for Biotechnology Information , 2019, Springer Reference Medizin.

[3]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[4]  Joseph E. Peters,et al.  Transposon Tn7 Is Widespread in Diverse Bacteria and Forms Genomic Islands , 2007, Journal of bacteriology.

[5]  J. H. Crosa,et al.  Global Gene Expression as a Function of the Iron Status of the Bacterial Cell: Influence of Differentially Expressed Genes in the Virulence of the Human Pathogen Vibrio vulnificus , 2008, Infection and Immunity.

[6]  Amos Bairoch,et al.  The PROSITE database , 2005, Nucleic Acids Res..

[7]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[8]  Steven C. Slater,et al.  Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria , 2009, Journal of Bacteriology.

[9]  Fan Yang,et al.  TIGRFAMs: a protein family resource for the functional identification of proteins , 2001, Nucleic Acids Res..

[10]  Dinanath Sulakhe,et al.  PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways , 2005, Nucleic Acids Res..

[11]  Timothy J. Harlow,et al.  Highways of gene sharing in prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Joshua Orvis,et al.  Identification of the Iron-Responsive Genes of Neisseria gonorrhoeae by Microarray Analysis in Defined Medium , 2005, Journal of bacteriology.

[13]  Patricia L. Clark,et al.  Rare Codons Cluster , 2008, PloS one.

[14]  J. V. van Putten,et al.  Successful Selection of Cross-Protective Vaccine Candidates for Ornithobacterium rhinotracheale Infection , 2005, Infection and Immunity.

[15]  K. Shockley,et al.  The Thermotoga maritima Phenotype Is Impacted by Syntrophic Interaction with Methanococcus jannaschii in Hyperthermophilic Coculture , 2006, Applied and Environmental Microbiology.

[16]  Vincent Schächter,et al.  Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data , 2008, BMC Systems Biology.

[17]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[18]  A. Dillmann Enzyme Nomenclature , 1965, Nature.

[19]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  H. Wong,et al.  Dynamic Localization of MreB in Vibrio parahaemolyticus and in the Ectopic Host Bacterium Escherichia coli , 2008, Applied and Environmental Microbiology.

[22]  Ingmar Reuter,et al.  Integr8 and Genome Reviews: integrated views of complete genomes and proteomes , 2004, Nucleic Acids Res..

[23]  Cathy H. Wu,et al.  InterPro, progress and status in 2005 , 2004, Nucleic Acids Res..

[24]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[25]  Les Dethlefsen,et al.  Performance of the Translational Apparatus Varies with the Ecological Strategies of Bacteria , 2007, Journal of bacteriology.

[26]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[27]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[28]  M. Jacques,et al.  Modulation of Gene Expression in Actinobacillus pleuropneumoniae Exposed to Bronchoalveolar Fluid , 2009, PloS one.

[29]  Jan Marienhagen,et al.  Metabolic Function of Corynebacterium glutamicum Aminotransferases AlaT and AvtA and Impact on l-Valine Production , 2008, Applied and Environmental Microbiology.

[30]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[31]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[32]  S. Salzberg,et al.  Prediction of transcription terminators in bacterial genomes. , 2000, Journal of molecular biology.

[33]  J. H. Crosa,et al.  Genetic and Transcriptional Analysis of the Siderophore Malleobactin Biosynthesis and Transport Genes in the Human Pathogen Burkholderia pseudomallei K96243 , 2006, Journal of bacteriology.

[34]  Leila A. Mamirova,et al.  Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria , 2007, BMC Evolutionary Biology.

[35]  John-Marc Chandonia,et al.  Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications , 2006, BMC Structural Biology.

[36]  Jean-Marie Rouillard,et al.  OligoArrayDb: pangenomic oligonucleotide microarray probe sets database , 2009, Nucleic Acids Res..

[37]  N. Salama,et al.  The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components , 2008, Nucleic acids research.

[38]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[39]  Yongqun He,et al.  BBP: Brucella genome annotation with literature mining and curation , 2006, BMC Bioinformatics.

[40]  Alberto I. Roca,et al.  ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family , 2008, BMC Bioinformatics.

[41]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[42]  Bernhard O. Palsson,et al.  Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach , 2006, PLoS Comput. Biol..

[43]  Tatiana A. Tatusova,et al.  The National Center for Biotechnology Information's Protein Clusters Database , 2008, Nucleic Acids Res..

[44]  Richard D. Smith,et al.  Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation , 2009, PloS one.

[45]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[46]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[47]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[48]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[49]  S. Salzberg,et al.  Skewed oligomers and origins of replication. , 1998, Gene.

[50]  Roberta Leonardi,et al.  Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. , 2007, Biochemistry.

[51]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[52]  Owen White,et al.  Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics , 2005, Bioinform..

[53]  Robert C. Hopkins,et al.  Defining Genes in the Genome of the Hyperthermophilic Archaeon Pyrococcus furiosus: Implications for All Microbial Genomes , 2005, Journal of bacteriology.

[54]  Eric V Stabb,et al.  Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: Focus on point miscalls and artefactual expansions , 2008, BMC Genomics.

[55]  S. Salzberg,et al.  Alignment of whole genomes. , 1999, Nucleic acids research.

[56]  Henry S. Gibbons,et al.  Identification of Two Mycobacterium smegmatis Lipoproteins Exported by a SecA2-Dependent Pathway , 2007, Journal of bacteriology.