The extended coset leader weight enumerator of a twisted cubic code

The extended coset leader weight enumerator of the generalized Reed-Solomon $[q + 1, q - 3, 5]_q$ code is computed. The computation is considered as a question in finite geometry. For this we need the classification of the points, lines and planes in the projective three space under projectivities that leave the twisted cubic invariant. A line in three space determines a rational function of degree at most three and vice versa. Furthermore the double point scheme of a rational function is studied. The pencil of a true passant of the twisted cubic, not in an osculation plane gives a curve of genus one as double point scheme. With the Hasse-Weil bound on Fq-rational points we show that there is a 3-plane containing the passant.

[1]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[2]  R. Jurrius Codes, arrangements, matroids, and their polynomial links , 2012 .

[3]  G. R. Pellikaan,et al.  The coset leader and list weight enumerator , 2015 .

[4]  G. R. Pellikaan,et al.  Codes, arrangements and matroids , 2013 .

[5]  T. Willmore Algebraic Geometry , 1973, Nature.

[6]  Lisa R. Goldberg,et al.  Catalan numbers and branched coverings by the Riemann sphere , 1991 .

[7]  Peter Wild,et al.  FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .

[8]  A. Eremenko,et al.  Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry , 2004, math/0405196.

[9]  S. Marcugini,et al.  Twisted cubic and point-line incidence matrix in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {PG}(3 , 2021, Designs, Codes and Cryptography.

[10]  Aiden A. Bruen,et al.  Applications of line geometry over finite fields I: The twisted cubic , 1977 .

[11]  Daniele Bartoli,et al.  On planes through points off the twisted cubic in PG(3, q) and multiple covering codes , 2020, Finite Fields Their Appl..

[12]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[13]  L. Silverman Poncelet's closure theorem , 2000 .

[14]  Xiang-dong Hou,et al.  On a type of permutation rational functions over finite fields , 2020, Finite Fields Their Appl..

[15]  Giacomo Micheli,et al.  Full classification of permutation rational functions and complete rational functions of degree three over finite fields , 2018, Designs, Codes and Cryptography.

[16]  Stanislav Bulygin,et al.  Codes, Cryptology and Curves with Computer Algebra , 2017 .

[17]  Tor Helleseth,et al.  The weight distribution of the coset leaders for some classes of codes with related parity-check matrices , 1979, Discret. Math..