The analysis of moving visual patterns

[1]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[2]  J. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[4]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[5]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[6]  J. Movshon,et al.  Monocular and binocular detection of moving sinusoidal gratings , 1981, Vision Research.

[7]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[8]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[9]  D. C. Essen,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[10]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  S. Petersen,et al.  Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. , 1981, Journal of neurophysiology.

[12]  J. Tigges,et al.  Distribution of retinofugal and corticofugal axon terminals in the superior colliculus of squirrel monkey. , 1981, Investigative ophthalmology & visual science.

[13]  C. Bridges Agglutination of isolated rod outer segments by lectins. , 1981, Investigative ophthalmology & visual science.

[14]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  E. Yund,et al.  Responses of striate cortex cells to grating and checkerboard patterns. , 1979, The Journal of physiology.

[16]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[17]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[18]  D. V. van Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979, Annual review of neuroscience.

[19]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[20]  P. Hammond Directional tuning of complex cells in area 17 of the feline visual cortex , 1978, The Journal of physiology.

[21]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[22]  P. E. King-Smith,et al.  Luminance and opponent color contributions to visual detection and to temporal and spatial integration: Authors’ reply to comments , 1978 .

[23]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[24]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[25]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[26]  R. Vautin,et al.  Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. , 1977, Journal of neurophysiology.

[27]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[28]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[29]  J. Trojanowski,et al.  Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey , 1976, The Journal of comparative neurology.

[30]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[31]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[32]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[33]  J. Movshon The velocity tuning of single units in cat striate cortex. , 1975, The Journal of physiology.

[34]  P. O. Bishop,et al.  Orientation, axis and direction as stimulus parameters for striate cells. , 1974, Vision research.

[35]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[36]  Lloyd Kaufman,et al.  Sight and mind , 1974 .

[37]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[38]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[39]  C. Blakemore,et al.  Stimulus specificity in the human visual system. , 1973, Vision research.

[40]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[41]  D J Tolhurst,et al.  The Effects of Temporal Modulation on the Orientation Channels of the Human Visual System , 1973, Perception.

[42]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[43]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[44]  H. Barlow,et al.  Lack of specificity of neurones in the visual cortex of young kittens. , 1971, The Journal of physiology.

[45]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[46]  C. Blakemore,et al.  The orientation specificity of two visual after‐effects , 1971, The Journal of physiology.

[47]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[48]  R. Sekuler,et al.  Selectivities of human visual mechanisms for direction of movement and contour orientation. , 1968, Journal of the Optical Society of America.

[49]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[50]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[51]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[52]  R. Sekuler,et al.  Aftereffect of Seen Motion with a Stabilized Retinal Image , 1963, Science.

[53]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[54]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[55]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .