The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming

Long intergenic noncoding RNAs (lincRNAs) are derived from thousands of loci in mammalian genomes and are frequently enriched in transposable elements (TEs). Although families of TE-derived lincRNAs have recently been implicated in the regulation of pluripotency, little is known of the specific functions of individual family members. Here we characterize three new individual TE-derived human lincRNAs, human pluripotency-associated transcripts 2, 3 and 5 (HPAT2, HPAT3 and HPAT5). Loss-of-function experiments indicate that HPAT2, HPAT3 and HPAT5 function in preimplantation embryo development to modulate the acquisition of pluripotency and the formation of the inner cell mass. CRISPR-mediated disruption of the genes for these lincRNAs in pluripotent stem cells, followed by whole-transcriptome analysis, identifies HPAT5 as a key component of the pluripotency network. Protein binding and reporter-based assays further demonstrate that HPAT5 interacts with the let-7 microRNA family. Our results indicate that unique individual members of large primate-specific lincRNA families modulate gene expression during development and differentiation to reinforce cell fate.

[1]  F. Harada,et al.  Isolation of three kinds of human endogenous retrovirus-like sequences using tRNA(Pro) as a probe. , 1987, Nucleic acids research.

[2]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[3]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[4]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[5]  P. Rorsman,et al.  Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. , 2005, Genome research.

[6]  Li Chai,et al.  Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1 , 2006, Nature Cell Biology.

[7]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[8]  X. Chen,et al.  Sall4 Interacts with Nanog and Co-occupies Nanog Genomic Sites in Embryonic Stem Cells* , 2006, Journal of Biological Chemistry.

[9]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[10]  Gary Benson,et al.  Evolutionary History of Mammalian Transposons Determined by Genome-Wide Defragmentation , 2007, PLoS Comput. Biol..

[11]  Rudolf Jaenisch,et al.  DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal , 2007, Nature Genetics.

[12]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[13]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[14]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[15]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[16]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[17]  R. Jaenisch,et al.  A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. , 2008, Cell stem cell.

[18]  L. Goff,et al.  Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors , 2009, PloS one.

[19]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[20]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[21]  Robert L. Judson,et al.  Opposing microRNA families regulate self-renewal in mouse embryonic stem cells , 2010, Nature.

[22]  Leonard Lipovich,et al.  Genome-wide computational identification and manual annotation of human long noncoding RNA genes. , 2010, RNA.

[23]  John L Rinn,et al.  RNA traffic control of chromatin complexes. , 2010, Current opinion in genetics & development.

[24]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[25]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[26]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[27]  Thomas Vierbuchen,et al.  Induction of human neuronal cells by defined transcription factors , 2011, Nature.

[28]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[29]  L. Maquat,et al.  lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements , 2010, Nature.

[30]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[31]  Howard Y. Chang,et al.  Uncovering the role of genomic "dark matter" in human disease. , 2012, The Journal of clinical investigation.

[32]  Yoshiaki Tanaka,et al.  Impact of retrotransposons in pluripotent stem cells , 2012, Molecules and Cells.

[33]  Howard Y. Chang,et al.  Identification of proteins binding coding and non-coding human RNAs using protein microarrays , 2012, BMC Genomics.

[34]  Jeremy Luban,et al.  HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency , 2012, Retrovirology.

[35]  David R. Kelley,et al.  Transposable elements reveal a stem cell-specific class of long noncoding RNAs , 2012, Genome Biology.

[36]  Sandy L. Klemm,et al.  Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase , 2012, Cell.

[37]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[38]  Wing Hung Wong,et al.  Characterization of the human ESC transcriptome by hybrid sequencing , 2013, Proceedings of the National Academy of Sciences.

[39]  Peter F. Stadler,et al.  Alu Elements in ANRIL Non-Coding RNA at Chromosome 9p21 Modulate Atherogenic Cell Functions through Trans-Regulation of Gene Networks , 2013, PLoS genetics.

[40]  Zev N. Kronenberg,et al.  Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs , 2013, PLoS genetics.

[41]  A. Wierzbicki,et al.  A SWI/SNF Chromatin-Remodeling Complex Acts in Noncoding RNA-Mediated Transcriptional Silencing , 2013, Molecular cell.

[42]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[43]  Ian Chambers,et al.  A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal , 2013, The EMBO journal.

[44]  Fabian J Theis,et al.  Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis , 2013, Nature Cell Biology.

[45]  T. Hughes,et al.  Identifying mRNA sequence elements for target recognition by human Argonaute proteins , 2014, Genome research.

[46]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[47]  Ryan M Spengler,et al.  Functional microRNAs and target sites are created by lineage-specific transposition. , 2014, Human molecular genetics.

[48]  T. Tsukiyama,et al.  ATP-dependent chromatin remodeling shapes the long noncoding RNA landscape , 2014, Genes & development.

[49]  L. Hurst,et al.  Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells , 2014, Nature.

[50]  S. Ohms,et al.  Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells , 2014, Oncotarget.

[51]  D. Srivastava,et al.  The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. , 2014, Cell stem cell.

[52]  G. Bourque,et al.  The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity , 2014, Nature Structural &Molecular Biology.

[53]  S. Ohms,et al.  LINE-1 retrotransposons and let-7 miRNA: partners in the pathogenesis of cancer? , 2014, Front. Genet..

[54]  R. Gibbs,et al.  Comparative primate genomics: emerging patterns of genome content and dynamics , 2014, Nature Reviews Genetics.

[55]  Howard Y. Chang,et al.  Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells , 2015, Nature.

[56]  H. Ng,et al.  Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. , 2015, Cell stem cell.