Learning for Semantic Parsing

Semantic parsing is the task of mapping a natural language sentence into a complete, formal meaning representation. Over the past decade, we have developed a number of machine learning methods for inducing semantic parsers by training on a corpus of sentences paired with their meaning representations in a specified formal language. We have demonstrated these methods on the automated construction of natural-language interfaces to databases and robot command languages. This paper reviews our prior work on this topic and discusses directions for future research.

[1]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[2]  Antonio Zampolli,et al.  Linguistic structures processing , 1977 .

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  Gary G. Hendrix,et al.  Developing a natural language interface to complex data , 1977, TODS.

[5]  David L. Waltz,et al.  An English language question answering system for a large relational database , 1978, CACM.

[6]  Jay Earley,et al.  An efficient context-free parsing algorithm , 1970, Commun. ACM.

[7]  Roger K. Moore Computer Speech and Language , 1986 .

[8]  John Cocke,et al.  A Statistical Approach to Machine Translation , 1990, CL.

[9]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[10]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[11]  Andreas Stolcke,et al.  An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities , 1994, CL.

[12]  J. Siskind A computational study of cross-situational techniques for learning word-to-meaning mappings , 1996, Cognition.

[13]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[14]  Michael Collins,et al.  Three Generative, Lexicalised Models for Statistical Parsing , 1997, ACL.

[15]  Jerome A. Feldman,et al.  Modeling Embodied Lexical Development , 1997 .

[16]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[17]  Céline Rouveirol,et al.  Machine Learning: ECML-98 , 1998, Lecture Notes in Computer Science.

[18]  Stevan Harnad The Symbol Grounding Problem , 1999, ArXiv.

[19]  Raymond J. Mooney,et al.  Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for Semantic Parsing , 2000, EMNLP.

[20]  Victor Zue,et al.  Conversational interfaces: advances and challenges , 1997, Proceedings of the IEEE.

[21]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[22]  Mark Johnson,et al.  Lexicalized Stochastic Modeling of Constraint-Based Grammars using Log-Linear Measures and EM Training , 2000, ACL.

[23]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[24]  Kevin Knight,et al.  A Syntax-based Statistical Translation Model , 2001, ACL.

[25]  Raymond J. Mooney,et al.  Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing , 2001, ECML.

[26]  Deb K. Roy,et al.  Learning visually grounded words and syntax for a scene description task , 2002, Comput. Speech Lang..

[27]  Hiroaki Sato,et al.  The FrameNet Database and Software Tools , 2002, LREC.

[28]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[29]  Raymond J. Mooney,et al.  Acquiring Word-Meaning Mappings for Natural Language Interfaces , 2011, J. Artif. Intell. Res..

[30]  Dmitry Zelenko,et al.  Kernel Methods for Relation Extraction , 2002, J. Mach. Learn. Res..

[31]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[32]  Oren Etzioni,et al.  Modern Natural Language Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability , 2004, COLING.

[33]  Chen Yu,et al.  On the Integration of Grounding Language and Learning Objects , 2004, AAAI.

[34]  Bernhard Schölkopf,et al.  Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference , 2004, NIPS 2004.

[35]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[36]  Gregory Kuhlmann and Peter Stone and Raymond J. Mooney and Shavlik Guiding a Reinforcement Learner with Natural Language Advice: Initial Results in RoboCup Soccer , 2004, AAAI 2004.

[37]  Xavier Carreras,et al.  Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling , 2004, CoNLL.

[38]  Xavier Carreras,et al.  Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling , 2005, CoNLL.

[39]  Razvan C. Bunescu,et al.  Subsequence Kernels for Relation Extraction , 2005, NIPS.

[40]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[41]  Raymond J. Mooney,et al.  A Statistical Semantic Parser that Integrates Syntax and Semantics , 2005, CoNLL.

[42]  Razvan C. Bunescu,et al.  A Shortest Path Dependency Kernel for Relation Extraction , 2005, HLT.

[43]  Rohit J. Kate,et al.  Learning to Transform Natural to Formal Languages , 2005, AAAI.

[44]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[45]  Raymond J. Mooney,et al.  Discriminative Reranking for Semantic Parsing , 2006, ACL.

[46]  Rohit J. Kate,et al.  Using String-Kernels for Learning Semantic Parsers , 2006, ACL.

[47]  Raymond J. Mooney,et al.  Learning for Semantic Parsing with Statistical Machine Translation , 2006, NAACL.

[48]  Mitchell P. Marcus,et al.  OntoNotes: The 90% Solution , 2006, NAACL.