Increasing Genomic Complexity by Gene Duplication and the Origin of Vertebrates

Prevailing hypotheses concerning the origin of the vertebrate genome postulate successive genome duplications before the origin of fishes or tetrapods. These hypotheses predict episodic expansion of gene families early in vertebrate evolution (mostly before the origin of fishes), tetralogous relationships between gene copies samples from invertebrates and vertebrates, and gene family trees with symmetrical shapes. None of these predictions were evident from a phylogenetic analysis of 35 gene families. Overall, the results do not refute the hypothesis that gene family evolution is governed by independent gene duplications occurring with identical probability across gene lineages. These results suggest that the genome complexity of contemporary vertebrates mostly reflect small‐scale (regional) DNA duplications instead of large‐scale (genomic) duplications.

[1]  S. Ohno,et al.  Evolution from fish to mammals by gene duplication. , 2009, Hereditas.

[2]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[3]  Stephen Jay Gould,et al.  Stochastic Models of Phylogeny and the Evolution of Diversity , 1973, The Journal of Geology.

[4]  Stephen Jay Gould,et al.  The shape of evolution: a comparison of real and random clades , 1977, Paleobiology.

[5]  Earl D. McCoy,et al.  There Have Been No Statistical Tests of Cladistic Biogeographical Hypotheses , 1981 .

[6]  D. H. Colless,et al.  Phylogenetics: The Theory and Practice of Phylogenetic Systematics. , 1982 .

[7]  H. Szarski,et al.  Cell size and the concept of wasteful and frugal evolutionary strategies. , 1983, Journal of theoretical biology.

[8]  J. Bonner The Evolution of Complexity by Means of Natural Selection , 1988 .

[9]  C. Brown,et al.  DNA sequence evolution of the amylase multigene family in Drosophila pseudoobscura. , 1990, Genetics.

[10]  S. Heard,et al.  PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC, AND RANDOMLY GENERATED PHYLOGENETIC TREES , 1992, Evolution; international journal of organic evolution.

[11]  Roderic D. M. Page,et al.  Genes, organisms, and areas: the problem of multiple lineages , 1993 .

[12]  M. Slatkin,et al.  SEARCHING FOR EVOLUTIONARY PATTERNS IN THE SHAPE OF A PHYLOGENETIC TREE , 1993, Evolution; international journal of organic evolution.

[13]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[14]  S. Brenner,et al.  Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome , 1993, Nature.

[15]  Richard Axel,et al.  Coding of olfactory information: Topography of odorant receptor expression in the catfish olfactory epithelium , 1993, Cell.

[16]  A. Chess,et al.  The family of genes encoding odorant receptors in the channel catfish , 1993, Cell.

[17]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[18]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[19]  Richard Gordon,et al.  Evolution Escapes Rugged Fitness Landscapes by Gene Or Genome Doubling: the Blessing of Higher Dimensionality , 1994, Comput. Chem..

[20]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  A. Clark,et al.  Invasion and maintenance of a gene duplication. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Detera-Wadleigh,et al.  Phylogeny of the steroid receptor superfamily. , 1994, Molecular phylogenetics and evolution.

[23]  A. Hughes Evolution of cysteine proteinases in eukaryotes. , 1994, Molecular phylogenetics and evolution.

[24]  M. A. McClure,et al.  Comparative analysis of multiple protein-sequence alignment methods. , 1994, Molecular biology and evolution.

[25]  P. Currie,et al.  Structure, expression and duplication of genes which encode phosphoglyceromutase of Drosophila melanogaster. , 1994, Genetics.

[26]  M. Adams,et al.  How many genes in the human genome? , 1994, Nature Genetics.

[27]  W. Atchley,et al.  Molecular evolution of the MyoD family of transcription factors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Page,et al.  Phylogenetic Noise Leads to Unbalanced Cladistic Tree Reconstructions , 1995 .

[29]  S. Yokoyama,et al.  Amino acid replacements and wavelength absorption of visual pigments in vertebrates. , 1995, Molecular biology and evolution.

[30]  J. B. Walsh,et al.  How often do duplicated genes evolve new functions? , 1995, Genetics.

[31]  J. Felsenstein,et al.  A Hidden Markov Model approach to variation among sites in rate of evolution. , 1996, Molecular biology and evolution.

[32]  G. Rubin,et al.  The Role of the Genome Project in Determining Gene Function: Insights from Model Organisms , 1996, Cell.

[33]  E. Solomon,et al.  The 5' end of the BRCA1 gene lies within a duplicated region of human chromosome 17q21. , 1996, Oncogene.

[34]  M. Porter,et al.  The dynein gene family in Chlamydomonas reinhardtii. , 1996, Genetics.

[35]  D. Lancet,et al.  Sequence analysis in the olfactory receptor gene cluster on human chromosome 17: recombinatorial events affecting receptor diversity. , 1996, Genomics.

[36]  M. Ekker,et al.  The evolution of the vertebrate Dlx gene family. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[38]  N. Satoh,et al.  Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. , 1996, Gene.

[39]  R. J. Mitchell,et al.  Recurrent duplication and deletion polymorphisms on the long arm of the Y chromosome in normal males. , 1996, Human molecular genetics.

[40]  L. Hood,et al.  The Complete 685-Kilobase DNA Sequence of the Human β T Cell Receptor Locus , 1996, Science.

[41]  K. Kuma,et al.  Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specific genes in the early evolution of chordates. , 1996, Molecular biology and evolution.

[42]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[43]  P. Holland,et al.  Hox genes and chordate evolution. , 1996, Developmental biology.

[44]  Temple F. Smith,et al.  Reconstruction of ancient molecular phylogeny. , 1996, Molecular phylogenetics and evolution.

[45]  S. Rozen,et al.  The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned , 1996, Nature Genetics.

[46]  K. J. Fryxell,et al.  The coevolution of gene family trees. , 1996, Trends in genetics : TIG.

[47]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[48]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[49]  M. Iwami,et al.  Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. , 1996, Journal of molecular biology.

[50]  Imperfect Information and the Balance of Cladograms and Phenograms , 1996 .

[51]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[52]  M. Semënov,et al.  Human dishevelled genes constitute a DHR-containing multigene family. , 1997, Genomics.

[53]  P. Bugert,et al.  Duplication of an approximately 1.5 Mb DNA segment at chromosome 5q22 indicates the locus of a new tumour gene in nonpapillary renal cell carcinomas , 1997, Oncogene.

[54]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[55]  J. Spring,et al.  Vertebrate evolution by interspecific hybridisation – are we polyploid? , 1997, FEBS letters.

[56]  M. Kasahara,et al.  Chromosomal duplication and the emergence of the adaptive immune system. , 1997, Trends in genetics : TIG.

[57]  Arne Ø. Mooers,et al.  Inferring Evolutionary Process from Phylogenetic Tree Shape , 1997, The Quarterly Review of Biology.

[58]  S. Brenner,et al.  Molecular cloning of 5-hydroxytryptamine (5-HT) type 1 receptor genes from the Japanese puffer fish, Fugu rubripes. , 1997, Gene.

[59]  Byrappa Venkatesh,et al.  Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes , 1997, Nature Genetics.

[60]  D. Riemer,et al.  The single calmodulin gene of the cephalochordate Branchiostoma. , 1997, Gene.

[61]  M. Nei,et al.  Evolution by the birth-and-death process in multigene families of the vertebrate immune system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Sankoff,et al.  Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. , 1997, Genetics.

[63]  T. Schlake,et al.  The nude gene encodes a sequence-specific DNA binding protein with homologs in organisms that lack an anticipatory immune system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Wagner,et al.  Phylogenetic reconstruction of vertebrate Hox cluster duplications. , 1997, Molecular biology and evolution.

[65]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[66]  F. Allendorf,et al.  Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. , 1997, Genetics.

[67]  T. Neuman,et al.  Embryonic expression and evolution of duplicated E-protein genes in Xenopus laevis: parallels with ancestral E-protein genes. , 1997, Genetics.

[68]  L. Silver,et al.  Newly identified paralogous groups on mouse chromosomes 5 and 11 reveal the age of a T-box cluster duplication. , 1997, Genomics.

[69]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Gibert,et al.  engrailed Duplication Events During the Evolution of Barnacles , 1997, Journal of Molecular Evolution.

[71]  D. Wake,et al.  Genome size, secondary simplification, and the evolution of the brain in salamanders. , 1997, Brain, behavior and evolution.

[72]  D. Bowtell,et al.  Chromosomal mapping of five highly conserved murine homologues of the Drosophila RING finger gene seven-in-absentia. , 1997, Genomics.

[73]  A. Hughes,et al.  Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes 6, 9, and 1. , 1998, Molecular biology and evolution.

[74]  D. Birnbaum,et al.  Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. , 1998, Molecular biology and evolution.

[75]  K. H. Wolfe,et al.  Eukaryote genome duplication - where's the evidence? , 1998, Current opinion in genetics & development.

[76]  P. Holland,et al.  Estimation of Hox gene cluster number in lampreys. , 1998, The International journal of developmental biology.

[77]  J. Rossier,et al.  Two sequence-ready contigs spanning the two copies of a 200-kb duplication on human 21q: partial sequence and polymorphisms. , 1998, Genomics.

[78]  M W Simmen,et al.  Gene number in an invertebrate chordate, Ciona intestinalis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[80]  M. Mattéi,et al.  A large polymorphic repeat in the pericentromeric region of human chromosome 15q contains three partial gene duplications. , 1998, Human molecular genetics.

[81]  C. Brown,et al.  Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. , 1998, Molecular biology and evolution.

[82]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[83]  S. Ohno,et al.  The notion of the Cambrian pananimalia genome and a genomic difference that separated vertebrates from invertebrates. , 1998, Progress in molecular and subcellular biology.

[84]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.