Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma

[1]  K. Lindblad-Toh,et al.  A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis , 2008, Cytogenetic and Genome Research.

[2]  Jing Ma,et al.  Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors , 2008, Cancer.

[3]  M. Stickney,et al.  MicroRNA expression in canine mammary cancer , 2008, Mammalian Genome.

[4]  F. Alt,et al.  Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. , 2008, Genes & development.

[5]  M. Breen Canine cytogenetics – from band to basepair , 2008, Cytogenetic and Genome Research.

[6]  A. Jemal,et al.  Cancer Statistics, 2008 , 2008, CA: a cancer journal for clinicians.

[7]  J. Modiano,et al.  Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans – man and his best friend share more than companionship , 2008, Chromosome Research.

[8]  T. Rosol,et al.  A novel canine lymphoma cell line: a translational and comparative model for lymphoma research. , 2007, Leukemia research.

[9]  C. Couto,et al.  Results of a web-based health survey of retired racing Greyhounds. , 2007, Journal of veterinary internal medicine.

[10]  K. Lindblad-Toh,et al.  Efficient mapping of mendelian traits in dogs through genome-wide association , 2007, Nature Genetics.

[11]  P. C. Crawford,et al.  Prevalence of and intrinsic risk factors for appendicular osteosarcoma in dogs: 179 cases (1996-2005). , 2007, Journal of the American Veterinary Medical Association.

[12]  M. Hauck,et al.  Heritability and segregation analysis of osteosarcoma in the Scottish deerhound. , 2007, Genomics.

[13]  P. Tsai,et al.  A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog. , 2007, The Journal of heredity.

[14]  F. Shofer,et al.  Characterization of the biological behaviour of appendicular osteosarcoma in Rottweilers and a comparison with other breeds: a review of 258 dogs. , 2007, Veterinary and comparative oncology.

[15]  M. Gaub,et al.  KIT gene in pediatric osteosarcomas: Could it be a new therapeutic target? , 2007, International journal of cancer.

[16]  M. Lamfers,et al.  Evolving gene therapy approaches for osteosarcoma using viral vectors: review. , 2007, Bone.

[17]  David M. Thomas,et al.  Molecular pathogenesis of osteosarcoma. , 2007, DNA and cell biology.

[18]  K. Lindblad-Toh,et al.  The dog as a cancer model , 2006, Nature Biotechnology.

[19]  H. Murua Escobar,et al.  Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. , 2006, Cancer genetics and cytogenetics.

[20]  M. Ruan,et al.  High WT1 Expression Is Associated with Very Poor Survival of Patients with Osteogenic Sarcoma Metastasis , 2006, Clinical Cancer Research.

[21]  S. Fosmire,et al.  Naturally occurring translational models for development of cancer gene therapy , 2006 .

[22]  H. Yoshikawa,et al.  Prognostic significance of Wilms tumor gene (WT1) mRNA expression in soft tissue sarcoma , 2006, Cancer.

[23]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[24]  Francis Galibert,et al.  Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. , 2005, Genome research.

[25]  Lisa L. Wang Biology of osteogenic sarcoma. , 2005, Cancer journal.

[26]  Paul R. Avery,et al.  Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. , 2005, Cancer research.

[27]  P. Terrier,et al.  Prognostic significance of allelic imbalance at the c-kit gene locus and c-kit overexpression by immunohistochemistry in pediatric osteosarcomas. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  S. Knuutila,et al.  Gene amplifications in osteosarcoma—CGH microarray analysis , 2005, Genes, chromosomes & cancer.

[29]  G. Mahairas,et al.  An integrated 4249 marker FISH/RH map of the canine genome , 2004, BMC Genomics.

[30]  A. Llombart‐Bosch,et al.  Deregulation of the G1 to S-Phase Cell Cycle Checkpoint Is Involved in the Pathogenesis of Human Osteosarcoma , 2004, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[31]  M. Breen,et al.  Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes , 2004, Cytogenetic and Genome Research.

[32]  Stephen M Hewitt,et al.  The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis , 2004, Nature Medicine.

[33]  A. Sandberg,et al.  Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. , 2003, Cancer genetics and cytogenetics.

[34]  W. Robinson,et al.  Clinical and Pathologic Relevance of p53 Index in Canine Osseous Tumors , 2003, Veterinary pathology.

[35]  H. Yoshikawa,et al.  Overexpression of the Wilms' tumor gene WT1 in human bone and soft‐tissue sarcomas , 2003, Cancer science.

[36]  H. J. Baker,et al.  A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[37]  W. Winkelmann,et al.  Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas , 2002, International journal of cancer.

[38]  L. Glickman,et al.  Endogenous gonadal hormone exposure and bone sarcoma risk. , 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[39]  S. Steinberg,et al.  Treatment of Metastatic Osteosarcoma With the Somatostatin Analog OncoLar: Significant Reduction of Insulin-Like Growth Factor-1 Serum Levels , 2002, Journal of pediatric hematology/oncology.

[40]  S. Hewitt,et al.  A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[41]  R. Levine,et al.  Tumor Suppressor PTEN is Mutated in Canine Osteosarcoma Cell Lines and Tumors , 2002, Veterinary pathology.

[42]  R. Levine,et al.  Overexpression of the Sis Oncogene in a Canine Osteosarcoma Cell Line , 2002, Veterinary pathology.

[43]  O. Haas,et al.  Felix Mitelman: Database of chromosome aberrations in cancer , 2002, Human Genetics.

[44]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[45]  G. Siegal,et al.  Cytogenetics and Molecular Biology of Osteosarcoma , 2002, Laboratory Investigation.

[46]  J. Kirpensteijn,et al.  Prognostic Significance of a New Histologic Grading System for Canine Osteosarcoma , 2002, Veterinary pathology.

[47]  M. Breen,et al.  Comparative genomic hybridization (CGH) in dogs--application to the study of a canine glial tumour cell line. , 2000, Veterinary journal.

[48]  R. Levine,et al.  Inactivation of p53 and Retinoblastoma Family Pathways in Canine Osteosarcoma Cell Lines , 2000, Veterinary pathology.

[49]  J. Bayani,et al.  Cytogenetic Findings in 36 Osteosarcoma Specimens and a Review of the Literature , 2000 .

[50]  E. Macewen,et al.  Spontaneously Occurring Tumors of Companion Animals as Models for Human Cancer , 2000, Cancer investigation.

[51]  P. Ambros,et al.  Chromosomal regions involved in the pathogenesis of osteosarcomas. , 1999, Genes, chromosomes & cancer.

[52]  S. Knuutila,et al.  DNA sequence copy number increase at 8q: A potential new prognostic marker in high‐grade osteosarcoma , 1999, International journal of cancer.

[53]  G. Wei,et al.  CDK4 gene amplification in osteosarcoma: Reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons , 1999, International journal of cancer.

[54]  C. Miller,et al.  Status of the p53, Rb and MDM2 genes in canine osteosarcoma. , 1998, Anticancer research.

[55]  D. Louis,et al.  CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. , 1998, The American journal of pathology.

[56]  U. Maurer,et al.  High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. , 1997, Blood.

[57]  M. Mcguire,et al.  Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. , 1997, Cancer genetics and cytogenetics.

[58]  J. Sagartz,et al.  p53 Tumor Suppressor Protein Overexpression in Osteogenic Tumors of Dogs , 1996, Veterinary pathology.

[59]  K. Hahn,et al.  Diagnostic and Prognostic Importance of Chromosomal Aberrations Identified in 61 Dogs with Lymphosarcoma , 1994, Veterinary pathology.

[60]  K. Ishizaki,et al.  Mutation spectrum of the retinoblastoma gene in osteosarcomas. , 1994, Cancer research.

[61]  E. Macewen,et al.  Spontaneous tumors in dogs and cats: Models for the study of cancer biology and treatment , 1990, Cancer and Metastasis Reviews.

[62]  B. Fuchs,et al.  Comparative biology of human and canine osteosarcoma. , 2007, Anticancer research.

[63]  C. Langford,et al.  The DAPI Banded Karyotype of the Domestic Dog (Canis familiaris) Generated Using Chromosome-Specific Paint Probes , 2004, Chromosome Research.

[64]  Natalie,et al.  Genetic Structure of the Purebred Domestic Dog , 2004 .

[65]  A. Sandberg,et al.  Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. , 2003, Cancer genetics and cytogenetics.

[66]  E. Ostrander,et al.  The canine genome. , 1997, Advances in veterinary medicine.