The MoSGrid Science Gateway - A Complete Solution for Molecular Simulations.

The MoSGrid portal offers an approach to carry out high-quality molecular simulations on distributed compute infrastructures to scientists with all kinds of background and experience levels. A user-friendly Web interface guarantees the ease-of-use of modern chemical simulation applications well established in the field. The usage of well-defined workflows annotated with metadata largely improves the reproducibility of simulations in the sense of good lab practice. The MoSGrid science gateway supports applications in the domains quantum chemistry (QC), molecular dynamics (MD), and docking. This paper presents the open-source MoSGrid architecture as well as lessons learned from its design.

[1]  Péter Kacsuk,et al.  P‐GRADE portal family for grid infrastructures , 2011, Concurr. Comput. Pract. Exp..

[2]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[3]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[4]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[5]  Kent Milfeld,et al.  From Proposal to Production: Lessons Learned Developing the Computational Chemistry Grid Cyberinfrastructure , 2006, Journal of Grid Computing.

[6]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[7]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[8]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[9]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[10]  Modesto Orozco,et al.  MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations , 2012, Bioinform..

[11]  Péter Kacsuk,et al.  P-GRADE Portal: A generic workflow system to support user communities , 2011, Future Gener. Comput. Syst..

[12]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[13]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[14]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[15]  Henry S. Rzepa,et al.  Chemical Markup, XML and the World-Wide Web. 2. Information Objects and the CMLDOM , 2001, J. Chem. Inf. Comput. Sci..

[16]  Sabine C. Mueller,et al.  BALL - biochemical algorithms library 1.3 , 2010, BMC Bioinformatics.

[17]  Noelia Faginas Lago,et al.  An extension of the grid empowered molecular simulator to quantum reactive scattering , 2012, J. Comput. Chem..

[18]  Adam Liwo,et al.  Protein-folding dynamics: overview of molecular simulation techniques. , 2007, Annual review of physical chemistry.

[19]  Chang-Sung Jeong,et al.  Workflow-Based Grid Portal for Quantum Mechanics , 2004, GCC Workshops.

[20]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[21]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[22]  Elizabeth Chia,et al.  GridMACS Portal: A Grid Web Portal for Molecular Dynamics Simulation Using GROMACS , 2010, 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation.

[23]  David van der Spoel,et al.  Protein Folding Properties from Molecular Dynamics Simulations , 2006, PARA.

[24]  Alexandre M J J Bonvin,et al.  A Flexible, Grid-Enabled Web Portal for GROMACS Molecular Dynamics Simulations. , 2012, Journal of chemical theory and computation.

[25]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[26]  Antonio Laganà,et al.  COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond , 2010, Journal of Grid Computing.

[27]  Thomas Steinke,et al.  A Single Sign-On Infrastructure for Science Gateways on a Use Case for Structural Bioinformatics , 2012, Journal of Grid Computing.

[28]  Hans-Peter Lenhof,et al.  BALLView: a tool for research and education in molecular modeling , 2006, Bioinform..

[29]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[30]  M. Seibert,et al.  Reproducible polypeptide folding and structure prediction using molecular dynamics simulations. , 2005, Journal of molecular biology.

[31]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[32]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[33]  Andreas Prlic,et al.  BioJava: an open-source framework for bioinformatics in 2012 , 2012, Bioinform..