A computed tomography (CT) cut-off for differentiating neoplastic lesions (polyps/carcinoma) from normal colon in contrast-enhanced CT colonography (CTC) relating to the contrast phase and lesion size is determined. CT values of 64 colonic lesions (27 polyps <10 mm, 13 polyps ≥10 mm, 24 carcinomas) were determined by region-of-interest (ROI) measurements in 38 patients who underwent contrast-enhanced CTC. In addition, the height (H) of the colonic lesions was measured in CT. CT values were also measured in the aorta (A), superior mesenteric vein (V) and colonic wall. The contrast phase was defined by % !AMS LaTeX.tdl!TeX -- AMS-LaTeX!% MathType!MTEF!2!0!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadg% eacqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG4baacaGLOaGaayzk% aaGaamOvaaaa!3D97!$$xA + {\left( {1 - x} \right)}V$$ using x as a weighting factor for describing the different contrast phases ranging from the pure arterial phase (x=1) over the intermediate phases (x=0.9–0.1) to the pure venous phase (x=0). The CT values of the lesions were correlated with their height (H), the different phases (% !AMS LaTeX.tdl!TeX -- AMS-LaTeX!% MathType!MTEF!2!0!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadg% eacqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG4baacaGLOaGaayzk% aaGaamOvaaaa!3D97!$$xA + {\left( {1 - x} \right)}V$$) and the ratio % !AMS LaTeX.tdl!TeX -- AMS-LaTeX!% MathType!MTEF!2!0!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca% WG4bGaamyqaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaadIhaaiaa% wIcacaGLPaaacaWGwbaacaGLBbGaayzxaaGaai4laiaadIeaaaa!4109!$${\left[ {xA + {\left( {1 - x} \right)}V} \right]}/H$$. The CT cut-off was linearly adjusted to the imaged contrast phase and height of the lesion by the line % !AMS LaTeX.tdl!TeX -- AMS-LaTeX!% MathType!MTEF!2!0!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2% da9iaad2gadaWadaqaaiaadIhacaWGbbGaey4kaSYaaeWaaeaacaaI% XaGaeyOeI0IaamiEaaGaayjkaiaawMcaaiaadAfaaiaawUfacaGLDb% aacaGGVaGaamisaiabgUcaRiaadMhadaWgaaWcbaGaaGimaaqabaaa% aa!46C5!$$y = m{\left[ {xA + {\left( {1 - x} \right)}V} \right]}/H + y_{0} $$. The slope m was determined by linear regression in the correlation (% MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiBaiaabw % gacaqGZbGaaeyAaiaab+gacaqGUbGaeSipIOZaamWaaeaacaWG4bGa % amyqaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaadIhaaiaawIcaca % GLPaaacaWGwbaacaGLBbGaayzxaaGaai4laiaadIeaaaa!47D1! $$ {\text{lesion}} \sim {\left[ {xA + {\left( {1 - x} \right)}V} \right]}/H $$) and the Y-intercept y0 by the minimal shift of the line needed to maximize the accuracy of separating the colonic wall from the lesions. The CT value of the lesions correlated best with the intermediate phase: 0.4A + 0.6V (r=0.8 for polyps ≥10 mm, r=0.6 for carcinomas, r=0.4 for polyps <10 mm). The accuracy in the differentiation between lesions and normal colonic wall increased with the height implemented as divisor, reached 91% and was obtained by the dynamic cut-off described by the formula: % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbfv % 3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9 % frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbP % Yxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaiaa % bogacaqG1bGaaeiDaiaab2cacaqGVbGaaeOzaiaabAgadaqadaqaai % aadgeacaGGSaGaamOvaiaacYcacaWGibaacaGLOaGaayzkaaGaeyyp % a0JaaGymaiaac6cacaaIXaWaamWaaeaacaaIWaGaaiOlaiaaisdaca % WGbbGaey4kaSIaaGimaiaac6cacaaI2aGaamOvaaGaay5waiaaw2fa % aiaac+cacaWGibGaey4kaSIaaGOnaiaaiMdacaGGUaGaaGioaaaa!627A! $$ {\text{cut-off}}{\left( {A,V,H} \right)} = 1.1{\left[ {0.4A + 0.6V} \right]}/H + 69.8 $$. The CT value of colonic polyps or carcinomas can be increased extrinsically by scanning in the phase in which 0.4A + 0.6V reaches its maximum. Differentiating lesions from normal colon based on CT values is possible in contrast-enhanced CTC and improves when the cut-off is adjusted (normalized) to the contrast phase and lesion size.
[1]
Y. Masutani,et al.
Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: pilot study.
,
2002,
Radiology.
[2]
Hiroyuki Yoshida,et al.
Computerized detection of colorectal masses in CT colonography based on fuzzy merging and wall-thickening analysis.
,
2004,
Medical physics.
[3]
C Kremser,et al.
Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy.
,
2000,
Radiology.
[4]
E. van Marck,et al.
Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia
,
2001,
The Journal of pathology.
[5]
T. Vogl,et al.
Colonography: current status, research directions and challenges. Update 2002
,
2002,
European Radiology.
[6]
Aytekin Oto,et al.
CT attenuation of colorectal polypoid lesions: evaluation of contrast enhancement in CT colonography
,
2003,
European Radiology.
[7]
J. Sosna,et al.
Colorectal neoplasms: role of intravenous contrast-enhanced CT colonography.
,
2003,
Radiology.
[8]
A. Konstantinidou,et al.
A morphometric study of neovascularization in colorectal carcinoma
,
1998,
Cancer.
[9]
T. J. Vogl,et al.
Automated mass detection in contrast-enhanced CT colonography: an approach based on contrast and volume
,
2005,
European Radiology.
[10]
V. Runge,et al.
Worldwide clinical safety assessment of gadoteridol injection: an update
,
1997,
European Radiology.
[11]
A. Vecchione,et al.
Contrast-enhanced computed tomographic colonography in the follow-up of colorectal cancer patients: a feasibility study
,
2003,
European Radiology.
[12]
Konstantina S. Nikita,et al.
A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier
,
2003,
IEEE Transactions on Information Technology in Biomedicine.
[13]
H. Thomsen,et al.
Adverse reactions to iodinated contrast media
,
2001,
European Radiology.
[14]
M. Reiser,et al.
Effective contrast use in CT angiography and dual-phase hepatic CT performed with a subsecond scanner.
,
1999,
Investigative radiology.
[15]
U Albrecht,et al.
A Randomized, Blinded, Prospective Trial to Compare the Safety and Efficacy of Three Bowel-Cleansing Solutions for Colonoscopy (HSG-01*)
,
2003,
Endoscopy.
[16]
T. Vogl,et al.
Computer-aided diagnosis in contrast-enhanced CT colonography: an approach based on contrast
,
2002,
European Radiology.
[17]
Hironobu Nakamura,et al.
The Optimal Dose of Nicardipine for Enhancement of Indirect Portography
,
1998,
CardioVascular and Interventional Radiology.
[18]
Guy Marchal,et al.
Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods
,
2002,
European Radiology.
[19]
J. Fletcher,et al.
Assessment of small bowel Crohn disease: noninvasive peroral CT enterography compared with other imaging methods and endoscopy--feasibility study.
,
2003,
Radiology.
[20]
T. Kozuka,et al.
Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media.
,
1990,
Radiology.
[21]
G. Viale,et al.
Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations.
,
1995,
Cancer research.
[22]
C. Denkert,et al.
Adhesion and Migration of HRT-18 Colorectal Carcinoma Cells on Extracellular Matrix Components Typical for the Desmoplastic Stroma of Colorectal Adenocarcinomas
,
2003,
Oncology.
[23]
W. Luboldt,et al.
Multidetector CT of the colon
,
2003,
European Radiology.
[24]
W. Pichler,et al.
Delayed allergy-like reactions to X-ray contrast media: mechanistic considerations
,
2000,
European Radiology.
[25]
W. Bechstein,et al.
Früherkennung von kolorektalen Tumoren: CT oder MRT?
,
2003,
Der Radiologe.
[26]
J. Kruskal,et al.
Utility of intravenously administered contrast material at CT colonography.
,
2000,
Radiology.